
Disclaimer

This document is a post-print version of an article published in the Lecture
Notes in Computer Science series (as allowed by their policy).

To cite the published version (which is the only worth citing), please use

@incollection{Aubert2014Unification,
author={Aubert, Clément and Bagnol, Marc},
title={Unification and Logarithmic Space},
year={2014},
isbn={978-3-319-08917-1},
booktitle={Rewriting and Typed Lambda Calculi},
volume={8560},
series={Lecture Notes in Computer Science},
editor={Dowek, Gilles},
doi={10.1007/978-3-319-08918-8_6},
publisher={Springer International Publishing},
pages={77--92},
language={English},
note={Post-print version available at

\url{http://aubert.perso.math.cnrs.fr/recherche/unification-and-logarithmic-space.pdf}}
}

2017/03/15

http://link.springer.com/chapter/10.1007/978-3-319-12736-1_3
http://link.springer.com/chapter/10.1007/978-3-319-12736-1_3
http://www.sherpa.ac.uk/romeo/issn/0302-9743/

Unification and Logarithmic Space

Clément Aubert and Marc Bagnol?

Aix-Marseille Université, CNRS, I2M, UMR 7373, 13453 Marseille, France

Abstract. We present an algebraic characterization of the complexity
classes Logspace and NLogspace, using an algebra with a composition
law based on unification. This new bridge between unification and
complexity classes is inspired from proof theory and more specifically
linear logic and Geometry of Interaction.
We show how unification can be used to build a model of computation by
means of specific subalgebras associated to finite permutations groups.
We then prove that whether an observation (the algebraic counterpart of
a program) accepts a word can be decided within logarithmic space. We
also show that the construction can naturally represent pointer machines,
an intuitive way of understanding logarithmic space computing.

Keywords: Implicit Complexity, Unification, Logarithmic Space, Proof Theory,
Pointer Machines, Geometry of Interaction.

Introduction

Proof theory and complexity theory. There is a longstanding tradition of
relating proof theory (more specifically linear logic [1]) and implicit complexity
theory that dates back to the introduction of bounded [2] and light [3] logics.
Control over the modalities [4,5], type assignment [6] and stratification of
exponential boxes [7], to name a few, led to a clearer understanding of the
complexity bounds linear logic could entail on the cut-elimination procedure.

We propose to push further this approach by adopting a more semantical and
algebraic point of view that will allow us to capture non-deterministic logarithmic
space computation.
Geometry of Interaction. As the study of cut-elimination has grown as a
central topic in proof theory, its mathematical modeling became of great interest.
The Geometry of Interaction [8] research program led to mathematical models
of cut-elimination in terms of paths in proofnets [9], token machines [10] and
operator algebras [11]. It was already used with complexity concerns [12,13].

Recent works [13,14,15] studied the link between Geometry of Interaction
and logarithmic space, relying on the theory of von Neumann algebras. Those
three articles are indubitably sources of inspiration of this work, but the whole
construction is made anew, in a simpler framework.
? This work was partly supported by the ANR-10-BLAN-0213 Logoi and the ANR-11-
BS02-0010 Récré.

Unification. Unification is one of the key-concepts of theoretical computer
science, for it is used in logic programming and is a classical subject of study for
complexity theory. It was shown [16,17] that one can model cut-elimination with
unification techniques.

Execution will be expressed in terms of matching in a unification algebra.
This is a simple framework, yet expressive enough to encode the action of finite
permutation groups on an unbounded tensor product, which is a crucial ingredient
of our construction.

Contribution.We carry on the methodology of bridging Geometry of Interaction
and complexity theory with a renewed approach. It relies on an simpler
representation of execution in a unification-based algebra, proved to capture
exactly logarithmic space complexity.

While the representation of inputs (words over a finite alphabet) comes
from the classical Church representation of lists, observations (the algebraic
counterpart of programs) are shown to correspond very naturally to a notion of
pointer machines. This correspondence allows us to prove that reversibility (of
machines) is related to the algebraic notion of isometricity (of observations).
Organization of this article. In Sect.1 we review some classical results on
unification of first-order terms and use them to build the algebra that will
constitute our computational setting.

We explain in Sect.2 how words and computing devices (observations) can be
modeled by particular elements of this algebra. The way they interact to yield a
notion of language recognized by an observation is described in Sect.3.

Finally, we show in Sect.4 that our construction captures exactly logarithmic
space computation, both deterministic and non-deterministic.

1 The Unification Algebra

1.1 Unification

Unification can be generally thought of as the study of formal solving of equations
between terms.

This topic was introduced by Herbrand, but became really widespread after
the work of J. A. Robinson on automated theorem proving. The unification
technique is also at the core of the logic programming language Prolog and type
inference for functional programming languages such as CaML and Haskell.

Specifically, we will be interested in the following problem:

Given two terms, can they be “made equal” by replacing their variables?

Definition 1 (terms)
We consider the following set of first-order terms

T ::= x, y, z, . . . | a, b, c, . . . | T •T

where x, y, z, · · · ∈ V are variables, a, b, c, . . . are constants and • is a binary
function symbol.

For any t ∈ T , we will write Var(t) the set of variables occurring in t . We say
that a term is closed when Var(t) = ∅ , and denote Tc the set of closed terms.

Notation. The binary function symbol • is not associative, but we will write it
by convention as right associating to lighten notations: t •u •v := t •(u •v)

Definition 2 (substitution)
A substitution is a map θ : V→ T such that the set Dom(θ) := {v ∈ V |θ(v) 6= v }
(the domain of θ) is finite. A substitution with domain {x1, . . . , xn } such that
θ(x1) = u1 , . . . , θ(xn) = un will be written as { x1 7→ u1 ; . . . ; xn 7→ un } .
If t ∈ T is a term we write t.θ the term t where any occurrence of any variable
x has been replaced by θ(x) .
If θ = { xi 7→ ui } and ψ = { yj 7→ vj } , their composition is defined as

θ;ψ := { xi 7→ ui.ψ } ∪ { yj 7→ vj | yj 6∈ Dom(θ) }

Remark. The composition of substitutions is such that t.(θ;ψ) = (t.θ).ψ holds.

Definition 3 (renamings and instances)
A renaming is a substitution α such that α(V) ⊆ V and that is bijective. A term
t′ is a renaming of t if t′ = t.α for some renaming α .
Two substitutions θ, ψ are equal up to renaming if there is a renaming α such
that ψ = θ;α .
A substitution ψ is an instance of θ if there is a substitution σ such that
ψ = θ;σ .

Proposition 4
Let θ, ψ be two substitutions. If θ is an instance of ψ and ψ is an instance of
θ , then they are equal up to renaming.

Definition 5 (unification)
Two terms t, u are unifiable if there is a substitution θ such that t.θ = u.θ .

We say that θ is a most general unifier (MGU) of t, u if any other unifier of
t, u is an instance of θ .

Remark. It follows from Proposition 4 that any two MGU of a pair of terms
are equal up to renaming.
We will be interested mostly in the weaker variant of unification where one can
first perform renamings on terms so that their variables are distinct, we introduce
therefore a specific vocabulary for it.

Definition 6 (disjointness and matching)
Two terms t, u are matchable if t′, u′ are unifiable, where t′, u′ are renamings
(Definition 3) of t, u such that Var(t′) ∩ Var(u′) = ∅ .
If two terms are not matchable, they are said to be disjoint.

Example. x and f •x are not unifiable.
But they are matchable, as x.{x 7→ y ; y 7→ x } = y which is unifiable with f •x .
More generally, disjointness is stronger than non-unifiability.

The crucial feature of first-order unification is the (decidable) existence of most
general unifiers for unification problems that have a solution.

Proposition 7 (MGU)
If a unification problem has a unifier, then it has a MGU.
Whether two terms are unifiable and, in case they are, finding a MGU is decidable.

As unification grew in importance, the study of its complexity gained in attention.
A complete survey [18] tells the story of the bounds getting sharpened: general
first-order unification was finally proved [19] to be a Ptime-complete problem.
In this article, we are concerned with a very much simpler case of the problem:
the matching (Definition 6) of linear terms (ie. where variables occur at most
once). This case can be solved in a space-efficient way.

Proposition 8 (matching in logarithmic space [20, Lemma 20])
Whether two linear terms t, u with disjoint sets of variables are unifiable, and if
so finding a MGU, can be computed in logarithmic space in the size1 of t, u on a
deterministic Turing machine
The lemma in [20] actually states that the problem is in NC1, a complexity class
of parallel computation known to be included in Logspace.
We will use only a special case of the result, matching a linear term against a
closed term.

1.2 Flows and Wirings

We now use the notions we just saw to build an algebra with a product based on
unification. Let us start with a monoid with a partially defined product, which
will be the basis of the construction.

Definition 9 (flows)
A flow is an oriented pair written t↼u with t, u ∈ T such that Var(t) = Var(u) .
Flows are considered up to renaming: for any renaming α , t↼u = t.α↼u.α .
We will write F the set of (equivalence classes of) flows.
We set I := x↼x and (t↼u)† := u↼t so that (.)† is an involution of F .

A flow t↼u can be thought of as a ‘match ... with u -> t’ in a ML-style
language. The composition of flows follows this intuition.
Definition 10 (product of flows)
Let u↼v ∈ F and t↼w ∈ F . Suppose we have chosen two representatives of
the renaming classes such that their sets of variables are disjoint.
The product of u↼v and t↼w is defined if v, t are unifiable with MGU θ (the
choice of a MGU does not matter because of the remark following Definition 5)
and in that case: (u↼v)(t↼w) := u.θ↼w.θ .
1 The size of a term is the total number of occurrences of symbols in it.

Definition 11 (action on closed terms)
If t ∈ Tc is a closed term, (u↼v)(t) is defined whenever t and v are unifiable,
with MGU θ , in that case (u↼v)(t) := u.θ

Examples. Composition of flows: (x •c↼ (c •c) •x)(y •z↼z •y) = x •c↼x •c •c .
Action on a closed term: (x •c↼x •c •c)(d •c •c) = d •c .
Remark. The condition on variables ensures that the result is a closed term
(because Var(u) ⊆ Var(v)) and that the action is injective on its domain of
definition (because Var(v) ⊆ Var(u)). Moreover, the action is compatible with
the product of flows: l(k(t)) = (l k)(t) and both are defined at the same time.

By adding a formal element ⊥ (representing the failure of unification) to the set
of flows, one could turn the product into a completely defined operation, making
F an inverse monoid. However, we will need to consider the wider algebra of
sums of flows that is easily defined directly from the partially defined product.

Definition 12 (wirings)
Wirings are C-linear combinations of elements of F (formally: almost-everywhere
null functions from F to C), endowed with the following operations:(∑

i

λi li

)(∑
j

µj kj

)
:=
∑

i,j such that
(likj) is defined

λiµj(li kj) (with λi,µj∈C and li,kj∈F)

and
(∑

i

λi li

)†
:=
∑
i

λi l
†
i (where λ is the complex conjugate of λ)

We write U the set of wirings and refer to it as the unification algebra.

Remark. Indeed, U is a unital ∗-algebra: it is a C-algebra (considering the
product defined above) with an involution (.)† and a unit I .

Definition 13 (partial isometries)
A partial isometry is a wiring U ∈ U satisfying UU†U = U .

Example. (c •x↼x •d) + (d •c↼ c •c) is a partial isometry.
While U offers the general algebraic background to work in, we will need to
consider particular kind of wirings to study computation.

Definition 14 (concrete and isometric wirings)
A wiring is concrete whenever it is a sum of flows with all coefficients equal to 1 .
An isometric wiring is a concrete wiring that is also a partial isometry.
Given a set of wirings E we write E+ for the set of all concrete wirings of E .

Isometric wirings enjoy a direct characterization.

Proposition 15 (isometric wirings)
The isometric wirings are exactly the wirings of the form

∑
i ui↼ti with the

ui pairwise disjoint (Definition 6) and ti pairwise disjoint.

It will be useful to consider the action of wirings on closed terms. For this purpose
we extend Definition 11 to wirings.

Definition 16 (action on closed terms)
Let Vc be the free C-vector space over Tc .

Wirings act on base vectors of Vc in the following way(∑
i

λi li

)
(t) :=

∑
i such that

li(t) is defined

λi
(
li(t)

)
∈ Vc

which extends by linearity into an action on the whole Vc .
Isometric wirings have a particular behavior in terms of this action.
Lemma 17 (isometric action)
Let F be an isometric wiring and t a closed term. We have that F (t) and F †(t)

are either 0 or another closed term t′ (seen as an element of Vc).

1.3 Tensor Product and Permutations

We define now the representation in U of structures that provide enough
expressivity to model computation.
Unbounded tensor products will allow to represent data of arbitrary size, and
finite-support permutations will be used to manipulate these data.

Notations. Given any set of wirings or closed terms E , we write Vect(E) the
vector space generated by E , ie. the set of finite linear combinations of elements
of E (for instance Vect(Tc) = Vc).
Moreover, we set I := { λI | λ ∈ C } (with I = x↼x as in Definition 9) which
is the ∗-algebra of multiples of the identity, and u� v := u↼v + v↼u .
For brevity we write “∗-algebra” instead of the more correct “∗-subalgebra of U ”
(ie. a subset of U that is stable by linear combinations, product and (.)†).
Definition 18 (tensor product)
Let u↼v and t↼w be two flows. Suppose we have chosen representatives of
these renaming classes that have their sets of variables disjoint. We define their
tensor product as (u↼v) ⊗̇ (t↼w) := u •t↼v •w . The operation is extended
to wirings by bilinearity.
Given two ∗-algebras A,B , we define their tensor product as the ∗-algebra

A⊗̇B := Vect
{
F ⊗̇G

∣∣ F ∈ A, G ∈ B }
This actually defines an embedding of the algebraic tensor product of ∗-algebras
into U , which means in particular that (F ⊗̇G)(P ⊗̇Q) = (FP) ⊗̇ (GQ) . It
ensures also that the ⊗̇ operation indeed yields ∗-algebras.
Notation. As • , the ⊗̇ operation is not associative. We carry on our convention
and write it as right associating: A⊗̇B ⊗̇ C := A⊗̇ (B ⊗̇ C) .
Definition 19 (unbounded tensor)
Let A be a ∗-algebra. We define the ∗-algebras A⊗n for all n ∈ N as

A⊗0 := I and A⊗n+1 := A⊗̇A⊗n

and the ∗-algebra A⊗∞ :=
⋃
n∈N
A⊗n .

We will consider finite permutations, but allow them to be composed even when
their domain of definition do not match.
Notations. Let Sn be the set of finite permutations over {1, . . . , n}, if σ ∈ Sn ,
we define σ+k ∈ Sn+k as the permutation σ extended to { 1, . . . , n, . . . , n+ k }
letting σ+k(n+ i) := n+ i for i ∈ { 1, . . . , k } .
We also write Ik := Id{1,...,k} ∈ Sk .

Definition 20 (representation)
To a permutation σ ∈ Sn we associate the flow

[σ] := x1 •x2 • · · · •xn •y↼xσ(1) •xσ(2) • · · · •xσ(n) •y

A permutation σ ∈ Sn will act on the first n components of the unbounded
tensor product (Definition 19) by swapping them and leaving the rest unchanged.
The wirings [σ] internalize this action: in the above definition, the variable y at
the end stands for the components that are not affected.
Example. Let τ ∈ S2 be the permutation swapping the two elements of {1, 2}
and U1 ⊗̇U2 ⊗̇U3 ⊗̇ I ∈ U⊗3 ⊆ U⊗∞ . We have [τ] = x1 •x2 •y↼x2 •x1 •y and
[τ](U1 ⊗̇U2 ⊗̇U3 ⊗̇ I)[τ]† = U2 ⊗̇U1 ⊗̇U3 ⊗̇ I .

Proposition 21 (representation)
For σ ∈ Sn and τ ∈ Sn+k we have

[σ+k] = [σ][In+k] = [In+k][σ] [σ+k ◦ τ] = [σ][τ] and [σ−1] = [σ]†

Definition 22 (permutation algebra)
For n ∈ N we set [Sn] := { [σ] | σ ∈ Sn } and Sn := Vect[Sn] .
We define then S :=

⋃
n∈N
Sn , which we call the permutation algebra.

Proposition 21 ensures that the Sn and S are ∗-algebras.

2 Words and Observations

The representation of words over an alphabet in the unification algebra directly
comes from the translation of Church lists in linear logic and their interpretation
in Geometry of Interaction models [11,16].
This proof-theoretic origin is an useful guide for intuition, even if we give here a
more straightforward definition of the notion.

From now on, we fix a set of two distinguished constant symbols LR := { L, R } .

Definition 23 (word algebra)
To a set S of closed terms, we associate the ∗-algebra

S∗ := Vect { t↼u | t, u ∈ S }

(which is indeed an algebra because unification of closed terms is simply equality)

The word algebra associated to a finite set of constant symbols Σ is the ∗-algebra
defined as

WΣ := (I ⊗̇Σ∗ ⊗̇ LR∗) ⊗̇ (T∗c)
⊗1

(Tc is the set of all closed terms, I is defined at the beginning of Sect.1.3

⊗̇ is as in Definition 18 and (.)⊗1 is the case n = 1 of Definition 19)

The words we consider are cyclic, with a begin/end marker ? , a reserved constant
symbol. For example the word 0010 is to be thought of as ?0010 = 10?00 =
0?001 = · · · .
We consider therefore that the alphabet Σ always contains the symbol ? .

Definition 24 (word representation)
Let W = ?c1 . . . cn be a word over Σ and t0, t1, . . . , tn be distinct closed terms.
The representation W (t0, t1, . . . , tn) ∈ W+

Σ with respect to t0, t1, . . . , tn of W
is an isometric wiring (Definition 14), defined as

W (t0, t1, . . . , tn) := x • ? •R •(t0 •y)�x •c1 •L •(t1 •y)
+ x •c1 •R •(t1 •y)�x •c2 •L •(t2 •y)
+ · · ·
+ x •cn •R •(tn •y)�x • ? •L •(t0 •y)

We now define observations, programs computing on representations of words.
They lie in a particular ∗-algebra based on the representation of permutations
presented in Sect.1.3.

Definition 25 (observation algebra)
An observation over a finite set of symbols Σ is any element of O+

Σ where
OΣ := (T∗c ⊗̇Σ∗ ⊗̇ LR∗) ⊗̇ S , i.e. a finite sum of flows of the form

(s′ •c′ •d′↼s •c •d) ⊗̇ [σ]

with s, s′ closed terms, c, c′ ∈ Σ , d, d′ ∈ LR and σ is a permutation.
Moreover when an observation happens to be an isometric wiring, we will call it
an isometric observation.

3 Normativity: Independence from Representations

We are going to define how observations accept and reject words. This needs to
be discussed, because there is an issue with word representations: an observation
is an element of U and can therefore only interact with representations of a word,
and there are many possible representation of the same word (in Definition 24,
different choices of closed terms lead to different representations). Therefore one
has to ensure that acceptance or rejection is independent of the representation,
so that the notion makes the intended sense.
The termination of computations will correspond to the algebraic notion of
nilpotency, which we recall here.

Definition 26 (nilpotency)
A wiring F is nilpotent if Fn = 0 for some n .

Definition 27 (automorphism)
An automorphism of a ∗-algebra A is a linear application ϕ : A → A such that
for all F,G ∈ A : ϕ(FG) = ϕ(F)ϕ(G) , ϕ(F †) = ϕ(F)† and ϕ is injective .

Example. ϕ(U1 ⊗̇U2) := U2 ⊗̇U1 defines an automorphism of U ⊗̇U .
Notation. If ϕ is an automorphism of A and ψ is an automorphism of B ,
we write ϕ ⊗̇ψ the automorphism of A⊗̇B defined for all A ∈ A, B ∈ B as
(ϕ ⊗̇ψ)(A ⊗̇B) := ϕ(A) ⊗̇ψ(B) .

Definition 28 (normative pair)
A pair (A,B) of ∗-algebras is a normative pair whenever any automorphism ϕ

of A can be extended into an automorphism ϕ of the ∗-algebra E generated by
A ∪ B such that ϕ(F) = F for any F ∈ B ⊆ E .

The two following propositions set the basis for a notion of acceptance/rejection
independent of the representation of a word.

Proposition 29 (automorphic representations)
Any two representations W (t0, . . . , tn),W (u0, . . . , un) of a word W over Σ are
automorphic: there exists an automorphism ϕ of (T∗c)

⊗1 such that

(IdU ⊗̇ϕ)
(
W (t0, . . . , tn)

)
=W (u0, . . . , un)

Proof. Consider a bijection f : Tc → Tc such that f(ti) = ui for all i . Then set
ϕ(v •x↼w •x) := f(v) •x↼f(w) •x , extended by linearity. ut

Proposition 30 (nilpotency and normative pairs)
Let (A,B) be a normative pair and ϕ an automorphism of A . Let F ∈ U ⊗̇A ,
G ∈ U ⊗̇B and let ψ := IdU ⊗̇ϕ . Then GF is nilpotent if and only if Gψ(F)
is nilpotent.

Proof. Let ϕ be the extension of ϕ as in Definition 28 and ψ := IdU ⊗̇ϕ .
We have for all n 6= 0 that (Gψ(F))n = (ψ(G)ψ(F))n = (ψ(GF))n = ψ((GF)n) .
By injectivity of ψ , (Gψ(F))n = 0 if and only if (GF)n = 0 . ut

Corollary 31 (independence)
If
(
(T∗c)

⊗1,B
)
is a normative pair, W a word over Σ and F ∈ U ⊗̇B . The

product of F with the representation of the word, FW (t0, . . . , tn) , is nilpotent
for one choice of (t0, . . . , tn) if and only if it is nilpotent for all choices of
(t0, . . . , tn) .

The basic components of the word and observation algebras we introduced earlier
can be shown to form a normative pair.

Theorem 32
The pair

(
(T∗c)

⊗1,S
)
is normative.

Proof (sketch). By simple computations, the set

A := Vect
{
σF

∣∣ σ ∈ S and F ∈ (T∗c)
⊗∞ }

can be shown to be a ∗-algebra E , the ∗-algebra generated by S ∪ (T∗c)
⊗1 .

As ϕ is an automorphism of (T∗c)
⊗1 , it can be written as ϕ(G ⊗̇ I) = ψ(G) ⊗̇ I

for all G , with ψ an automorphism of T∗c .
We set for F = F1 ⊗̇ · · · ⊗̇Fn ⊗̇ I ∈ (T∗c)

⊗n , ϕ̃(F) := ψ(F1) ⊗̇ · · · ⊗̇ψ(Fn) ⊗̇ I
which extends into an automorphism of (T∗c)

⊗∞ by linearity. Finally, we extend
ϕ̃ to A by ϕ(σF) := σ ϕ̃(F) . It is then easy to check that ϕ has the required
properties. ut

Remark. Here we sketched a direct proof for brevity, but this can also be shown
by involving a little more mathematical structure (actions of permutations on the
unbounded tensor and crossed products) which would give a more synthetic proof.

We can then define the notion of the language recognized by an observation, via
Corollary 31.

Definition 33 (language of an observation)
Let φ ∈ O+

Σ be an observation over Σ . The language recognized by φ is the
following set of words over Σ :

L(φ) := {W word overΣ | φW (t0, . . . , tn)nilpotent for any (t0, . . . , tn) }

4 Wirings and Logarithmic Space

Now that we have defined our framework and showed how observations can
compute, we study the complexity of deciding whenever an observation accepts a
word (4.1), and how wirings can decide any language in (N)Logspace (4.2).

4.1 Soundness of Observations

The aim of this subsection is to prove the following theorem:

Theorem 34 (space soundness)
Let φ ∈ O+

Σ be an observation over Σ .

• L(φ) is decidable in non-deterministic logarithmic space.
• If φ is isometric, then L(φ) is decidable in deterministic logarithmic space.

Actually, the result stands for the complements of these languages, but as co-
NLogspace = NLogspace by the Immerman-Szelepcsényi theorem, this makes
no difference.
The main tool for this purpose is the notion of computation space: finite
dimensional subspaces of Vc (Definition 16) on which we will be able to observe
the behavior of certain wirings. It can be understood as the place where all the
relevant computation takes place.

Definition 35 (separating space)
A subspace E of Vc is separating for a wiring F whenever F (E) ⊆ E and
Fn(E) = 0 implies Fn = 0 .

Observations are finite sums of wirings. We can naturally associate a finite-
dimensional vector space to an observation and a finite set of closed terms.

Definition 36 (computation space)
Let { t0, . . . , tn } be a set of distinct closed terms and φ ∈ O+

Σ an observation.
Let N(φ) be the smallest integer and S(φ) the smallest (finite) set of closed
terms such that φ ∈ (S(φ)∗ ⊗̇Σ∗ ⊗̇ LR∗) ⊗̇ SN(φ) .
The computation space Compφ(t0, . . . , tn) is the subspace of Vc generated by the
terms

s •c •d •(a1 • · · · •aN(φ) • ?)

where s ∈ S(φ) , c ∈ Σ , d ∈ LR and the ai ∈ { t0, . . . , tn } .
The dimension of Compφ(t0, . . . , tn) is |Σ|2(n+ 1)N(φ)|S(φ)| (where |A| is the
cardinal of A), which is polynomial in n .

Lemma 37 (separation)
For any observation φ and any word W , the space Compφ(t0, . . . , tn) is separating
for the wiring φW (t0, . . . , tn) .

Proof (of Theorem 34). With these lemmas at hand, we can define the
non-deterministic algorithm below. It takes as an input the representation
W (t0, . . . , tn) of a word W of length n .
φ being a constant, one can compute once and for all N(φ) and S(φ) .

1: D ← 2|S(φ)| |Σ|(n+ 1)N(φ)

2: C ← 0
3: pick a term v ∈ Compφ(t0, . . . , tn)
4: while C ≤ D do
5: if (φW (t0, . . . , tn))(v) = 0 then
6: return ACCEPT
7: end if

8: pick a term v′

in (φW (t0, . . . , tn))(v)
9: v ← v′

10: C ← C + 1
11: end while
12: return REJECT

All computation paths (the “pick” at lines 3 and 8 being non-deterministic choices)
accept if and only if (φW (t0, . . . , tn))

n(Compφ(t0, . . . , tn)) = 0 for some n lesser
or equal to the dimension D of the computation space Compφ(t0, . . . , tn) . By
Lemma 37, this is equivalent to φW (t0, . . . , tn) being nilpotent.
The term chosen at lines 3 is representable by an integer of size at most D and
is erased by the one chosen at line 8 every time we go through the while-loop.
C and D are integers proportional to the dimension of the computation space,
which is representable in logarithmic space in the size of the input (Definition 36).
The computation of (φW (t0, . . . , tn))(v) at line 5 and 8 and can be performed
in logarithmic space by Proposition 8, as we are unifying closed terms with linear
terms.

Moreover, if φ is an isometric wiring, (φW (t0, . . . , tn))(v) consists of a single
term instead of a sum by Lemma 17, and there is therefore no non-deterministic
choice to be made at line 8. It is then enough to run the algorithm enumerating
all possible terms of Compφ(t0, . . . , tn) at line 3 to determine the nilpotency of
φW (t0, . . . , tn) . ut

4.2 Completeness: Representing Pointer Machines as Wirings

To prove the converse of Theorem 34, we prove that wirings can encode a special
kind of read-only multi-head Turing Machine: pointers machines. The definition
of this model will be guided by our understanding of the computation of wirings:
they won’t have the ability to write and acceptance will be defined as termination
of all paths of computation. For a survey of this topic, one may consult the first
author’s thesis [21, Chap.4], the main novelty of this part of our work is to notice
that reversible computation is represented by isometric operators.

Definition 38 (pointer machine)
A pointer machine over an alphabet Σ is a tuple (N, S, ∆) where

• N 6= 0 is an integer, the number of pointers,
• S is a finite set, the states of the machine,
• ∆ ⊆ (S×Σ × LR)× (S×Σ × LR)×SN , the transitions of the machine
(we will write (s, c, d)→ (s′, c′, d′)× σ the transitions, for readability).

A pointer machine will be called deterministic if for any A ∈ S×Σ × LR , there
is at most one B ∈ S×Σ × LR and one σ ∈ SN such that A→ B × σ ∈ ∆ .
In that case we can see ∆ as a partial function, and we say that M is reversible
if ∆ is a partial injection.

We call the first of the N pointers the main pointer, it is the only one that can
move. The other pointers are referred to as the auxiliary pointers. An auxiliary
pointer will be able to become the main pointer during the computation thanks
to permutations.

Definition 39 (configuration)
Given the length n of a word W = ?c1 . . . cn over Σ and a pointer machine
M = (N, S, ∆) , a configuration of (M,n) is an element of

S×Σ × LR× {0, 1, . . . , n}N

The element of S is the state of the machine and the element of Σ is the letter
the main pointer points at. The element of LR is the direction of the next move of
the main pointer, and the elements of {0, 1, . . . , n}N correspond to the positions
of the (main and auxiliary) pointers on the input.
As the input tape is considered cyclic with a special symbol marking the beginning
of the word (recall Definition 24), the pointer positions are integers modulo n+1
for an input word of length n .

Definition 40 (transition)
Let W be a word and M = (N, S, ∆) be a pointer machine. A transition of M
on input W is a triple of configurations

s, c, d, (p1, . . . , pN)
MOVE−−−→ s, c′, d, (p′1, . . . , p

′
N)

SWAP−−−→ s′, c′′, d′, (p′σ(1), . . . , p
′
σ(N))

such that

1. if d ∈ LR , d is the other element of LR ,
2. p′1 = p1 + 1 if d = R and p′1 = p1 − 1 if d = L ,
3. p′i = pi for i 6= 1 ,
4. c is the letter at position p1 and c′ is the letter at position p′1 ,
5. and (s, c′, d)→ (s′, c′′, d′)× σ belongs to ∆ .

There is no constraint on c′′ , but every time this value differs from the letter
pointed by p′σ(1) , the computation will halt on the next MOVE phase, because
there is a mismatch between the value that is supposed to have been read and
the actual bit of W stored at this position, and that would contradict the first
part of item 4. In terms of wirings, the MOVE phase corresponds to the application
of the representation of the word, whereas the SWAP phase corresponds to the
application of the observation.

Definition 41 (acceptance)
We say that M accepts W if any sequence of transitions

(
Ci

MOVE−−−→ C ′i
SWAP−−−→ C ′′i

)
such that C ′′i = Ci+1 for all i is necessarily finite.
We write L(M) the set of words accepted by M .

This means informally: we consider that a pointer machine accepts a word if it
cannot ever loop, from whatever configuration it starts from. That a lot of paths
of computation accepts “wrongly” is no worry, since only rejection is meaningful:
our pointer machines compute in a “universally non-deterministic” way, to stick
to the acceptance condition of wirings, nilpotency.

Proposition 42 (space and pointer machines)
If L ∈ NLogspace , then there exist a pointer machine M such that L(M) = L .
Moreover, if L ∈ Logspace then M can be chosen to be reversible.

Proof (sketch). It is well-known that read-only Turing Machines – or equivalently
(non-)Deterministic Multi-Head Finite Automata – characterize (N)Logspace
[22]. It takes little effort to see that our pointer machines are just a reasonable
rearrangement of this model, since it is always possible to encode the missing
information in the states of the machine.
That acceptance and rejections are “reversed” is harmless in the deterministic (or
equivalently reversible [23]) case, and uses that co-NLogspace = NLogspace
to get the expected result in the non-deterministic case. ut

As we said, our pointer machines are designed to be easily simulated by wirings,
so that we get the expected result almost for free.

Theorem 43 (space completeness)
If L ∈ NLogspace , then there exist an observation φ ∈ O+

Σ such that L(φ) = L .
Moreover, if L ∈ Logspace then φ is an isometric wiring.

Proof. By Proposition 42, there exists a pointer machine M = (N, S, ∆) such
that L(M) = L. We associate to the set S a set of distinct closed terms [S] and
write [s] the term associated to s . To any element D = (s, c, d)→ (s′, c′, d′)×σ
of ∆ we associate the flow

[D] := ([s′] •c′ •d′↼ [s] •c •d) ⊗̇ [σ] ∈ ([S]∗ ⊗̇Σ∗ ⊗̇ LR∗) ⊗̇ Sn ⊆ O+
Σ

and we define the observation [M] ∈ O+
Σ as

∑
D∈∆

[D] .

One can easily check that this translation preserves the language recognized
(there is even a step by step simulation of the computation on the word W by the
wiring [M]W (t0, . . . , tn)) and relates reversibility with isometricity: in fact, M
is reversible if and only if [M] is an isometric wiring. Then, if L ∈ Logspace ,
M is deterministic and can always be chosen to be reversible [23]. ut

Discussion

The language of the unification algebra gives us a twofold point of view on
computation, either through algebraic structures (that are described finitely by
wirings) or pointer machines. We may therefore start exploring possible variations
of the construction, combining intuitions from both worlds.
For instance, the choice of a normative pair can affect the expressivity of the
construction: the more restrictive the notion of representation of a word is,
the more liberal that of an observation can become, as suggested by T. Seiller.
Whether and how this can affect the corresponding complexity class is definitely
a direction for future work.
Another pending question about this approach to complexity classes is to delimit
the minimal prerequisites of the construction, its core.
Earlier works [13,14,15] made use of von Neumann algebras to get a setting that
is expressive enough, we ligthen the construction by using simpler objects. Yet,
the possibility of representing the action of permutations on a unbounded tensor
product is a common denominator that seems deeply related to logarithmic space
and pointer machines.
The logical counterpart of this work also needs clarifying. Indeed, the idea of
representation of words comes directly from proof-theory, while the notion of
observation does not seem to correspond to any known logical construction.
Finally, execution in our setting being based on iteration of matching, which
is computable efficiently by a parallel machine, it seems possible to relate our
modelisation with parallel computation.

References

1. Girard, J.Y.: Linear logic. Theoretical Computer Science 50 (1987) 1–102
2. Girard, J.Y., Scedrov, A., Scott, P.J.: Bounded Linear Logic: A Modular Approach

to Polynomial Time Computability. Theoretical Computer Science 97(1) (1992)
1–66

3. Girard, J.Y.: Light linear logic. In Leivant, D., ed.: Logic and Computational
Complexity. Volume 960 of Lecture Notes in Computer Science. (1995) 145–176

4. Schöpp, U.: Stratified Bounded Affine Logic for Logarithmic Space. In: LICS, IEEE
Computer Society (2007) 411–420

5. Dal Lago, U., Hofmann, M.: Bounded Linear Logic, Revisited. Logical Methods in
Computer Science 6(4) (2010)

6. Gaboardi, M., Marion, J.Y., Ronchi Della Rocca, S.: An Implicit Characterization
of PSPACE. ACM Transactions on Computational Logic 13(2) (2012) 18

7. Baillot, P., Mazza, D.: Linear logic by levels and bounded time complexity.
Theoretical Computer Science 411(2) (2010) 470–503

8. Girard, J.Y.: Towards a Geometry of Interaction. In: Proceedings of the AMS
Conference on Categories, Logic and Computer Science. (1989)

9. Asperti, A., Danos, V., Laneve, C., Regnier, L.: Paths in the lambda-calculus. In:
LICS, IEEE Computer Society (1994) 426–436

10. Laurent, O.: A token machine for full geometry of interaction (extended abstract).
In Abramsky, S., ed.: Typed Lambda Calculi and Applications. Volume 2044 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg (2001) 283–297

11. Girard, J.Y.: Geometry of interaction 1: Interpretation of System F. Studies in
Logic and the Foundations of Mathematics 127 (1989) 221–260

12. Baillot, P., Pedicini, M.: Elementary Complexity and Geometry of Interaction.
Fundamenta Informaticae 45(1-2) (2001) 1–31

13. Girard, J.Y.: Normativity in Logic. In: Epistemology versus Ontology. Volume 27
of Logic, Epistemology, and the Unity of Science. Springer (2012) 243–263

14. Aubert, C., Seiller, T.: Characterizing co-NL by a group action. Arxiv preprint
abs/1209.3422 (2012)

15. Aubert, C., Seiller, T.: Logarithmic Space and Permutations. Arxiv preprint
abs/1301.3189 (2013)

16. Girard, J.Y.: Geometry of Interaction III: Accommodating the Additives. In:
Advances in Linear Logic, LNS 222,CUP, 329–389. (1995) 329–389

17. Girard, J.Y.: Three lightings of logic (Invited Talk). In Ronchi Della Rocca, S.,
ed.: CSL. Volume 23 of Leibniz International Proceedings in Informatics., Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2013) 11–23

18. Knight, K.: Unification: A Multidisciplinary Survey. ACM Computing Surveys
21(1) (1989) 93–124

19. Dwork, C., Kanellakis, P.C., Mitchell, J.C.: On the sequential nature of unification.
Journal of Logic Programming 1(1) (1984) 35–50

20. Dwork, C., Kanellakis, P.C., Stockmeyer, L.J.: Parallel Algorithms for Term
Matching. SIAM Journal on Computing 17(4) (1988) 711–731

21. Aubert, C.: Linear Logic and Sub-polynomial Classes of Complexity. PhD thesis,
Université Paris 13 – Sorbonne Paris Cité (November 2013)

22. Hartmanis, J.: On Non-Determinancy in Simple Computing Devices. Acta
Informatica 1(4) (1972) 336–344

23. Lange, K.J., McKenzie, P., Tapp, A.: Reversible Space Equals Deterministic Space.
Journal of Computer and System Sciences 60(2) (2000) 354–367

	Unification and Logarithmic Space
	Introduction
	1 The Unification Algebra
	1.1 Unification
	1.2 Flows and Wirings
	1.3 Tensor Product and Permutations

	2 Words and Observations
	3 Normativity: Independence from Representations
	4 Wirings and Logarithmic Space
	4.1 Soundness of Observations
	4.2 Completeness: Representing Pointer Machines as Wirings

	Discussion
	References

