
Contextual equivalences in configuration structures and
reversibilityI,II

Clément Auberta,b,1,∗, Ioana Cristescuc,∗∗

aINRIA
bUniversité Paris-Est, LACL (EA 4219), UPEC, F-94010 Créteil, France
cDiderot, Sorbonne Paris Cité, P.P.S., UMR 7126, F-75205 Paris, France

Abstract

Contextual equivalences equate terms that have the same observable behaviour
in any context. A standard contextual equivalence for CCS is the strong barbed
congruence. Configuration structures are a denotational semantics for processes in
which one defines equivalences that are more discriminating, i.e., that distinguish
the denotation of terms equated by barbed congruence. Hereditary history
preserving bisimulation (HHPB) is such a relation. We define a strong back-
and-forth barbed congruence on RCCS, a reversible variant of CCS. We show
that the relation induced by the back-and-forth congruence on configuration
structures is equivalent to HHPB, thus providing a contextual characterization
of HHPB.

Keywords: Formal semantics, Process algebras and calculi, Reversible CCS,
Hereditary history preserving bisimulation, Strong barbed congruence,
Contextual characterization,
2000 MSC: 68Q85 Models and methods for concurrent and distributed
computing (process algebras, bisimulation, transition nets, etc.)
2012 MSC: [Theory of computation] – Semantics and reasoning – Program
semantics – Algebraic semantics, [Software and its engineering] – Software
notations and tools – General programming languages – Concurrent
programming languages

IExtended version of a work presented at ICE 2015 [1]. A part of this work appears, with
much more contextual material, in the second author’s Ph.D Thesis [2].

IIThis work was partly supported by the ANR-14-CE25-0005 ELICA and the ANR-11-INSE-
0007 REVER.

∗Corresponding author
∗∗Principal corresponding author

Email addresses: aubertc@appstate.edu (Clément Aubert),
ioana.cristescu@pps.univ-paris-diderot.fr (Ioana Cristescu)

URL: https://cs.appstate.edu/~aubertc/ (Clément Aubert),
http://www.pps.univ-paris-diderot.fr/~ioana/ (Ioana Cristescu)

1Present address: Department of Computer Science, Appalachian State University, Boone,
NC 28608, USA.

Preprint submitted to Journal of Logical and Algebraic Methods in ProgrammingMay 12, 2016

http://discotec2015.inria.fr/workshops/ice-2015/
http://lipn.univ-paris13.fr/~mazza/Elica/
http://www.pps.univ-paris-diderot.fr/~jkrivine/ANR/REVER/ANR_REVER/Welcome.html

Introduction

Reversibility
Being able to reverse a computation is an important feature of computing

systems. Reversibility is a key aspect in every system that needs to achieve
distributed consensus [3] to escape local states where the consensus cannot be
found. In such problems, multiple computing agents have to reach a common
solution. Allowing independent agents to backtrack and explore the solution
space enables them to reach a globally accepted state if given enough time and if a
common solution exists. For example, the dining philosophers problem [4] requires
a backtracking mechanism to prevent deadlocks. Rewinding a computation step
by step is also a common way to debug programs. In such settings the step by
step approach is often more useful than restarting the program from an initial
state.

Importantly, the backtracking mechanism can be integrated to the operational
semantics of a programming language, instead of adding a tailor-made imple-
mentation on top of each program. Constructing a formal model for reversible
concurrent systems require to address two challenges. The first one consists in
recording the information needed for backtracking: processes carry a memory
that keeps track of everything that has been done.

Importantly the needed information to backtrack is recorded in a distributed
fashion instead of using a centralized store, which could be a bottleneck for the
computation. The second challenge we need to address for designing a reversible
models consists in implementing an optimal notion of legitimate backward moves.
In a sequential program, one backtracks computations in the opposite order
to the execution. However, in a concurrent setting, we do not want to undo
the actions precisely in the opposite order than the one in which they were
executed, as this order may not materialize. The concurrency relation between
actions has to be taken into account. It can be argued that the most liberal
notion of reversibility is the one that just respects causality: an action can
be undone precisely after all the actions that causally depend on it have also
been undone. Then an acceptable backward path is causally consistent with the
forward computation.

There are different accounts of reversible operational semantics, RCCS [5, 6]
and CCSK [7] being the two main propositions for a reversible CCS. In these
works, reversibility is embedded into a (classical) process calculus.

Causal models
In interleaving models, the internal relations between different events cannot

be observed. In particular, causality is not treated as a primitive concept. On the
other hand, non-interleaving semantics have a primitive notion of concurrency
between computation events. As a consequence one can also derive a causality
relation, generally defined as the complement of concurrency. These models are

2

therefore sometimes called true-concurrent or causal or, if causality is represented
as a partial order on events, partial order semantics.2

A causal model is often an alternative representation of an existing interleaving
semantics that helps in understanding the relations between computations in the
latter. Usually in such models, sets of events are considered computational states.
Each set, called a configuration, represents a reachable state in the run of the
process. The behaviour of a system is encoded as a collection of such sets. The
set inclusion relation between the configurations stands for the possible paths
followed by the execution. Concurrency and causality are derivable from set
inclusion. In their generality, such models are called configuration structures [9],
they are a syntax-free and causal model that can interpret multiple calculi.

Stable families [10] are configuration structures equipped with a set of ax-
ioms, that capture the intended behaviour of a CCS process. Morphisms of
stable families capture sub-behaviours of processes and form a category of stable
families. Process combinators correspond then to universal constructions in this
category. The correspondence with CCS is established through an operational se-
mantics defined on stable families, abusively named in that context configuration
structures as well.

Behavioural equivalence
Behavioural equivalences are a major motivation in the study of formal

semantics. For instance, one wants to verify that the execution of a program
satisfies its expected behaviour, or that binaries obtained from the same source
code, but with different compilation techniques, behave the same. Thus the
interesting equivalences equate terms that behave the same. Moreover the
equivalence should be a congruence: two processes are equivalent if they behave
similarly in any context. Loosely speaking it aims at identifying process that
have a common external behaviour in any environment.

Equivalences defined on reduction semantics are often hard to prove. A proof
technique in this case is to define a LTS-based equivalence that is equivalent
with the reduction-based one and carry the proofs in LTS semantics.

Behavioural equivalences are defined on the operational semantics and thus
cannot access the structure of a term. The observations one does during the
execution of a process are called the observables of the relation. For instance
one observes whether the process terminates or whether it interacts with the
environment [11].

Causality and reversibility
Causality and reversibility are tightly connected notions [5, 12]. Causal

consistency is a correctness criterion for reversible computations. Therefore

2Event and configuration structures were introduced to define domains for concurrency [8].
Causal models are thus often, but inaccurately, called denotational : a denotational interpre-
tation is supposed to be invariant by reductions, a property that event structures do not
have.

3

whenever a reversible semantics is proposed, the calculus has to be equipped
first with a causal semantics.

Notably the connection between reversibility and causality is useful to define
meaningful reversible equivalences. Causal equivalences are more discriminating
than the traditional operational ones. However on a reversible operational
semantics one defines equivalences of the same expressivity. Causal equivalences
have been extensively studied [13–16]. Of particular interest is the hereditary
history preserving bisimulation, which was shown to correspond to a LTS-based
equivalence for a reversible CCS [7].

Equivalences on configuration structures
In CCS, equivalences are defined only on forward transitions and are therefore

inappropriate to study reversible processes.
A reversible bisimulation [17] is more adapted but it is not contextual. We

introduce a contextual equivalence on RCCS by adapting the notions of contexts
and barbs to the reversible setting. The resulting relation, called barbed back-
and-forth congruence is defined similarly to the barbed congruence of CCS except
that the backwards reductions are also observed.

Configuration structures provide a causal semantics for CCS. Equivalences on
configuration structures are more discriminating than the ones on the operational
setting. It is possible to move up and down in the lattice, whereas in the
operational semantics, only forward transitions have to be simulated. As an
example, consider the processes a | b and a.b+ b.a that are bisimilar in CCS but
whose causal relations between events differ.

In particular we are interested in hereditary history preserving bisimulation
(HHPB) in Definition 25, which equates configuration structures that simulate
each others’ forward and backward moves. Phillips and Ulidowski [13] showed
that the back-and-forth bisimulation corresponds to HHPB, that can be defined
in an operational setting thanks to reversibility. Allowing both forward and
backward transitions gives to the operational world the discriminating power of
causal models. We show that HHPB also corresponds to a congruence on RCCS,
the barbed back-and-forth congruence. It is the a contextual characterization of
HHPB which implies a contextual equivalence in configuration structures.

Outline
We begin by recalling notions on LTS and CCS, as well as their so-called

reversible variants (Sect. 1). RCCS (Sect. 1.2) is then proven to be a conservative
extension of CCS over the traces: there is a strong bisimulation between a
reversible process and a “classical”, memory-less, process (Lemma 3). Lastly,
we adapt the usual CCS notions of contexts, barbs, and barbed congruence
to RCCS (Sect. 1.3), thus introducing the back-and-forth barbed congruence
(Definition 14).

We next introduce the encoding of reversible process as configuration struc-
tures (Sect. 2). We recall the classical definitions (Sect. 2.1) as well as the
encoding of CCS terms as configuration structures (Sect. 2.2). Encoding of

4

RCCS terms is built on top of this previous encoding (Sect. 2.3), and an opera-
tional correspondence between reversible processes and their encodings is proven
(Lemma 6).

Finally, we introduce a notion of context for configuration structures (Sect. 3.1)
and study the relation induced on configuration structures by the barbed back-
and-forth congruence (Sect. 3.2). In Sect. 3.3 we introduce the hereditary history
preserving bisimilarity and provide a characterization by inductive relations.
Lastly, we show in Sect. 3.4 that HHPB is a congruence (Proposition 9) and
that whenever two configuration structures are barbed back-and-forth congruent,
they also are hereditary history preserving bisimilar (Theorem 2).

Our main contribution is proving that barbed congruence in RCCS cor-
responds to hereditary history preserving bisimulation, which is defined on
configuration structures. As a consequence, it provides a contextual characteri-
zation of equivalences defined in non-interleaving semantics.

Limitations
Our work is restrained to processes that forbid “auto-concurrency” and “auto-

conflict” (Definition 26). We do not cover recursion, though a treatment of
recursion in configuration structures exists [10]. “Irreversible” action is a feature
of RCCS [5] that is absent of our work.

We tried to stick to canonical notations and to remind of common definitions.
However, we consider the reader familiar with the syntax, congruence relation and
reduction rules of CCS. If not, a quick glance at a textbook [18] or handbook [19]
should help the reader uneasy with them.

1. Contextual equivalences in reversibility

Reversibility provides an implicit mechanism to undo computations. Interleav-
ing semantics use a Labeled Transition System (LTS) to represent computations,
henceforth referred to as the forward LTS. In a reversible semantics a second
LTS is defined that represents the backward moves (Sect. 1.1).

RCCS [5, 20, 21] (Sect. 1.2) is a reversible variant of CCS, that allows
computations to backtrack, hence introducing the notions of forward and backward
transitions. Memories attached to processes store the relevant information to
eventually do backward steps. Without this memory, RCCS terms are essentially
CCS terms (Lemma 3), but their presence forces to be precise when defining
contexts and contextual equivalence for the reversible case (Sect. 1.3).

1.1. (Reversible) labeled transition systems
A label-led transition system is a multi-graph where the nodes are called

states and the edges, transitions. Transitions are labeled by actions and may be
fired non-deterministically.

Definition 1 (Labelled Transition System). A labeled transition system is a
tuple (→, S,Act) made of a set S of states, a set Act of actions (or labels) and
a relation →⊆ S ×Act× S.

5

For s, s′ ∈ S and a, b ∈ Act , we write s a−→ s′ for (s, a, s′) ∈→ and s→ s′ if
s

a−→ s′ for some a ∈ Act.
Elements t : s

a−→ s′ of −→ are called transitions. Two transitions, t and t′
are composable, written t; t′, if the target of t is the source of t′.

Definition 2 (Trace). A trace, denoted by σ : t1; . . . ; tn is a sequence of
composable transitions. Except for the empty trace, denoted ε, all traces have a
source and a target, and can be decomposed as a transition followed by a trace.
Let Act? be the set of sequences in Act.

Define −→?⊆ S ×Act? × S the reachability relation as follows:

s
α1−→ · · · αn−→ s′ ⇐⇒ ∃t1, . . . , tn and s1, . . . , sn+1 such that

ti : si
αi−→ si+1 and s1 = s, sn+1 = s′.

We say in that case that s′ is reachable from s, that s′ is a derivative of s, and
that s is an ancestor of s′.

Definition 3 (Reversible LTS). Given (−→, S,Act) and (, S,Act) two labeled
transition systems defined on the same set of states and actions, we define
(�, S,Act) a third LTS by taking �=−→ ∪ . By convention, a transition
s −→ t is said to be forward, whereas a transition t s is said to be backward.
In t s, s is an ancestor of t.

A variety of semantically different backtracking mechanisms exists, for in-
stance,

• taking = ∅ models a language with only irreversible moves,

• in a sequential setting, if −→ draws a tree, taking = {(t, α, s) | s α−→ t}
forces the backward traces to follow exactly the forward execution.

In concurrency, backward traces are allowed if their source and target are
respectively the target and source of a forward trace.

1.2. Reversible CCS
A RCCS term, also called a monitored process, is a CCS process equipped

with a memory. A thread is a CCS term P guarded by a memory m and denoted
mB P . Processes can be composed of multiple threads. The memory acts as
a stack for the previous computations. Each entry in the memory is called a
(memory) event and has a unique identifier. The forward transitions push events
to the memories while the backward moves pop them out.

Definition 4 (Names, labels and actions). We define N = {a, b, c, . . . } to be the
set of names and N̄ = {ā, b̄, c̄, . . . } its co-names. The complement of a (co-)name
is given by a bijection [̄·] : N→ N̄, whose inverse is also denoted by [̄·], so that
¯̄a = a.

A synchronization is a pair of names that complement each other, as (a, ā),
and that is denoted with the special symbol τ , whose complement is undefined.

6

Actions are labeled using the set L = N∪ N̄∪ {τ} of (event) labels defined by
the following grammar:

N ∪ N̄ : λ, π := a ‖ ā ‖ . . . (CCS prefixes)
L : α, β := τ ‖ a ‖ ā ‖ . . . (Event labels)

As it is common, we will sometimes use a and b to range over names, and call
the set of names and co-names simply the set of names.

Transitions in both directions are decorated by the identifier of the associated
event. Identifiers on the (partial) events are used to remember their synchroniza-
tion partners. Thus to combine into a τ , the transitions need complementary
labels and the same identifier.

Grammar. Consider the following process constructors, also called combinators
or operators:

e := 〈i, α, P 〉 (memory events)
m := ∅ ‖ g .m ‖ e.m (memory stacks)

P,Q := λ.P ‖ P | Q ‖ λ.P + π.Q ‖ P\a ‖ 0 (CCS processes)
R,S := mB P ‖ R | S ‖ R\a (RCCS processes)

A (memory) event e = 〈i, α, P 〉 is made of:

• An event identifier i ∈ I that tags transitions. We may think of them as
pid, in the sense that they are a centrally distributed identifier attached
to each transition.

• A label α that marks which action has been fired (in the case of a forward
transition), or what action should be restored from the memory (in the
case of a backward move).

• A backup of the whole process P that has been erased when firing a sum,
or 0 otherwise.

In the memory stack, the fork symbol g marks a parallel composition. The
memory is then copied in two local memories, as depicted in the congruence rule
called “distribution memory” in Definition 5).

Notations 1. • We use N for the set of event identifiers I and let i, j, k
range over elements of I. Forward and backward transitions will be tagged

with such identifiers, and so we write i:α−→ and i:α
 . We use

i:α
� as a wildcard

for i:α−→ or i:α , and if there are indices i1, . . . , in and labels α1, . . . , αn such

that R1

i1:α1

� · · ·
in:αn

� Rn, then we write R1 �? Rn. We sometimes omit
the identifier in the transition. Thus we write τ−→ for the transition i:τ−→,
for some i.

7

• As identifiers uniquely tags memory events, we’ll use the identifier i to
denote the unique memory event e = 〈i, α, P 〉 of a process.

• For R a reversible process and m a memory, we denote I(m) (resp. I(R))
the set of identifiers occurring in m (resp. in R).

• The sets nm(R) of names in R, fn(R) of free names in R and bn(R) =
nm(R) \ fn(R) of bound (or private) names in R are defined by extending
the definition of free names on CCS terms to memories and RCCS terms:

fn(P\a) = fn(P) \ {a}
fn(a.P) = fn(ā.P) = {a} ∪ fn(P)

fn(P | Q) = fn(P +Q) = fn(P) ∪ fn(Q)

fn(0) = ∅

(CCS rules)

fn(R\a) = fn(R) \ {a}
fn(R | S) = fn(R) ∪ fn(S)

fn(mB P) = fn(P)

(RCCS rules)

We can also define the sets of name in a memory, denoted nm(m). All
names occurring in a memory are free.

Remark 1 (On recording the past). To store the information needed to back-
track, RCCS attaches local memories to each thread. CCSK [7], a variant of CCS,
simulates reductions by moving a pointer in the term, that is left unchanged.
Reversible higher-order π [17] uses a centralized, global memory to store the
process before a reduction. Keys are associated to each reduction, thus reverting
a transition with key k consists in restoring the process associated to k from
the global memory. The exact mechanism used for recording does not have an
impact on the theory except for the structural rules, as we note in Remark 2.

The labeled transition system for RCCS is given by the rules of Figure 1.
The null process, denoted 0, cannot perform any transition. We will often omit

it, so for example we write a | b instead of a.0 | b.0. The prefix constructor a.P
stands for sequential composition, the process interacts on a before continuing
with P . Rules In+ (for the input) and Out+ (for the output) consumes a
prefix by adding in the memory the corresponding event. The backward moves,
described by the rules In− and Out−, remove an event at the top of a memory
and restores the prefix and the non-deterministic sum. Those rules are presented
with a (guarded) sum, but we consider for instance ∅B a.P 1:a−→ 〈1, a, 0〉.∅B P
to be a legal transition, taking a.P + 0 (which is not syntactically correct) to be
a.P . Note that we are using guarded sum of two processes, but more general
forms of guarded sum (as in RCCS) or even unguarded sum can be supported.
We use guarded sum in order to foresee the case of weak bisimulation, which we
leave as future work, but also in order to simplify the notations.

8

In+ i /∈ I(m)
mB a.P +Q

i:a−→ 〈i, a,Q〉.mB P

Out+ i /∈ I(m)
mB ā.P +Q

i:ā−→ 〈i, ā, Q〉.mB P

In− i /∈ I(m)
〈i, a,Q〉.mB P i:a

 mB a.P +Q

Out− i /∈ I(m)
〈i, ā, Q〉.mB P i:ā

 mB ā.P +Q

(a) Prefix and sum rules

R
i:α−→ R′ S

i:ᾱ−→ S′Com+
R | S i:τ−→ R′ | S′

R
i:α
� R′ParL i /∈ I(S)

R | S
i:α
� R′ | S

R
i:α
 R′ S

i:ᾱ
 S′Com−

R | S i:τ
 R′ | S′

R
i:α
� R′ParR i /∈ I(S)

S | R
i:α
� S | R′

(b) Parallel constructions

R
i:α
� R′Hide a /∈ {α, ᾱ}

R\a
i:α
� R′\a

R ≡ R′
i:α
� S′ ≡ SCongr

R
i:α
� S

(c) Hiding and congruence

Figure 1: Rules of the RCCS LTS

9

Parallel composition P | Q employs the four rules of Figure 1b to derive a
transition. Rules Com+ and Com− depict two process agreeing to synchronize
or to undo a synchronization by providing two dual prefixes,3 agreeing on the
event identifier and triggering the transitions simultaneously. Rules ParL and
ParR allow respectively the left or the right process to compute independently
of the rest of the process. In those two later rules, the side condition i /∈ I(S)
ensures, in the forward direction, the uniqueness of the event identifiers and
it prevents, in the backward direction, a part of a previous synchronization to
backtrack alone.

Once the name a is “hidden in P ”, that is, made private to the process P , it
cannot be used to interact with the environment. This situation is denoted with
P\a and illustrated in rule Hide. Whenever the private name a is encountered
in the environment, α-renaming of a is done inside P :

P\a =α (P [b/a])\b

where P [b/a] stands for process P in which b substitutes a. We say that the
hiding operator is a binder for the private name a. The grammar of reversible
processes does not support the sum (R + S) or the prefix constructors (a.R), as
we do not have an interpretation for such processes.

The structural congruence, whose definition follows, is applied on terms by
the rule Congr. It is built on top of some of the corresponding rules for CCS,
and rewrites the terms under the memory or distributes it between two forking
processes.

Definition 5 (Structural congruence). Structural congruence on monitored
processes is the smallest equivalence relation up to uniform renaming of identifiers
generated by the:

mB (P +Q) ≡ mB (Q+ P) (1)
mB ((P +Q) +R) ≡ mB (P + (Q+R)) (2)

P =α Q

mB P ≡ mBQ
(α-conversion)

mB (P | Q) ≡ (g.mB P | g.mBQ) (distribution memory)
mB P\a ≡ (mB P)\a with a /∈ nm(m) (scope of restriction)

Remark 2 (On reduction semantics). Correctness criteria for reversible seman-
tics mostly relate it with its only-forward counterpart. However one may be
interested in defining a reduction semantics for the LTS of Figure 1 if only
to relate RCCS with other reversible semantics for CCS. One, then needs a
congruence relation on RCCS terms that has the monoid structure for parallel
composition and the null process 0. However, due to the fork constructor, the
associativity does not hold:

(R1|R2)|R3 6≡ R1|(R2|R3).

3Notice that since the complement of τ is not defined, only inputs and outputs synchronize.

10

Other reversible calculi, in particular the reversible higher-order π-calculus [17]
fares better: its congruence relation respects associativity, thanks to a mechanism
that uses bounded names for forking processes. Then α-renaming can be applied
on these forking names.

Alternatively, one could use “at distance rewriting” [22] to bypass the lack of
flexibility of our structural congruence.

In RCCS not all syntactically correct processes have an operational meaning.
Consider for instance

g.〈i, α, 0〉.∅ . P | ∅ . Q.

To make a backward transition, one should first apply the congruence rule called
“distribution memory” and then look for a rule of the LTS to apply. But this
is impossible, since the memory on the right-hand side of the parallel operator
does not contain a fork symbol (g) at its top. The distributed memory does not
agree on a common past, blocking the execution, but this term is correct from a
syntactical point of view. In the following, we will consider only the semantically
correct terms, called coherent.

Definition 6 (Coherent process). A RCCS process R is coherent if there exists
a CCS process P such that ∅B P −→? R.

Coherent terms are also called reachable, as they are obtained by a forward
execution from a process with an empty memory. Coherence of terms can
equivalently be defined in terms of coherence on memories [5, Definition 1].

Backtracking is non-deterministic because backtracking is possible on different
threads. However, it is noetherian and confluent as backward synchronizations
are deterministic [20, Lemma 11].

Lemma 1 (Unique origin). If R is a coherent process, then ∀R′ such that
R ≡ R′ or R� R′, then R′ is also coherent. Up to structural congruence, there
exists a unique process P such that R ? ∅ . P .

In the following, we call the origin of R and denote OR the unique process
P such that R ? ∅ . P .

Lastly, we recall a useful result, that asserts that every reversible trace can
be rearranged as a sequence of only-backward moves followed by a sequence of
only-forward moves.

Lemma 2 (Parabolic traces, [5, Lemma 10]). If R � · · · � S, then there
exists R′ such that R ? R′ −→? S.

It is natural to wonder if our reversible syntax is a conservative extension of
CCS. We will make sure in the following that the forward rules in the reversible
LTS correspond to the LTS of the natural semantics.

Definition 7 (Map from RCCS to CCS). We define inductively a map ε(·) from
RCCS terms to CCS terms by erasing the memory:

ε(mB P) = P ε(R|S) = ε(R)|ε(S) ε(R\a) = (ε(R))\a

11

In the following lemma, we denote α−→ the standard rewriting rule on CCS
terms.

Lemma 3 (Correspondence between R and ε(R)). For all R and S, R i:α−→ S

for some i iff ε(R)
α−→ ε(S).

Proof. The main elements of the proof are already known [5], and require an
additional function l mapping CCS terms to RCCS terms, i.e., l(P) = ∅BP . The
“if” part is an application of [5, Corollary 4] together with the observation that
R and l(ε(R)) can perform the same forward transitions, up to event identifier.
The “only if” part is a direct application of [5, Lemma 4], once we remarked that
every CCS term P is such that there exists a RCCS term R with ε(R) = P (just
take l(P)).

Lastly, we can define an order relation on memory events, that we call
structural causality. Intuitively, the order of events in the memory reflects the
causality relations between their respective transitions.

Definition 8 (Structural causality, [23, Definition 2.2.]). Let S1
i1:α1−→ S2 and

S2
i2:α2−→ S3 be two composable transitions. We say that the memory event i1

is a cause of event i2 in S3, denoted i1 <S3
i2 iff S3 contains the process

〈i2, α2, P2〉.〈i1, α1, P1〉.m B P3 for a memory m and three CCS processes P1, P2

and P3.

Given a memory and an event identifier, we can uniquely identify a memory
event. Therefore, sometimes we use only the event identifier to talk about an
event or about the structural causality between two events.

1.3. Contextual equivalences
Contextual equivalence for CCS terms [24] is now standard, but its extension

to RCCS is not straightforward, since contexts needs to be properly defined
(Definition 12). As usual, reductions are part of the observables, but observing
only them results in a too coarse relation, and adding termination is not relevant
in concurrency. Barbed congruence (Definition 11) has proven to be the right
notion for CCS, and we revisit it for RCCS terms. We begin by recalling
definitions of context and observables for CCS.

Definition 9 (Context). A context is a process with a hole [·] defined formally
by the grammar:

C[·] := [·] ‖ λ.C[·] ‖ P | C[·] ‖ C[·]\a ‖ P + λ.C[·]

Definition 10 (Barbs). Write P ↓α if there exists P ′ such that P α−→ P ′.

We now define a contextual equivalence where reductions and barbs are the
observables.

12

Definition 11 (Barbed congruence). A barbed bisimulation is a symmetric
relation R on CCS processes such that whenever P R Q the following holds:

P
τ−→ P ′ ⇒ ∃Q′ s.t. Q τ−→ Q′ and Q R Q′ (closed by reduction)
P ↓a ⇒ Q ↓a (barb preserving)

If there exists a barbed bisimulation between P and Q we write P ·∼
τ
Q and

say that P and Q are barbed bisimilar.
If ∀C[·], C[P]

·∼
τ
C[Q], we write P ∼τ Q and say that P and Q are barbed

congruent.

An interesting proposition allows to restrict the grammar of contexts in the
following.

Proposition 1. ∀a, P1, P2, Q, λ, a,

P1
·∼
τ
P2 ⇒

λ.P1

·∼
τ
λ.P2

P1\a
·∼
τ
P2\a

λ1.P1 + π.Q
·∼
τ
λ2.P2 + π.Q

Proof. 1. P1
·∼
τ
P2 ⇒ λ.P1

·∼
τ
λ.P2. From CCS’s grammar, λ 6= τ , hence

@P ′1, P ′2 such that P τ−→ P ′1 or P2
τ−→ P ′2. The relation {λ.P1, λ.P2} is

trivially a barbed bisimulation.

2. P1
·∼
τ
P2 ⇒ P1\a

·∼
τ
P2\a. Let us denote R1 the largest barbed bisimula-

tion for P1 and P2. We show that the relation R2 = {P1\a, P2\a | P1 R1

P2} is a barbed bisimulation. We have to show that:

• ∀b such that P1\a ↓b then P2\a ↓b. It follows from P1\a ↓b⇒ P1 ↓b
and b 6= a.

• P1\a
τ−→ P ′1 implies that P2\a

τ−→ P ′2 and P ′1 R2 P
′
2. By structural

induction on the transition P1\a
τ−→ P ′1 we have that ∃P ′′1 such that

P1
τ−→ P ′′1 and P ′′1 \a = P ′1. As P1 R1 P2 there exists P ′′2 such that

P2
τ−→ P ′′2 and we apply the rule Hide we get P2\a

τ−→ P ′′2 \a. Thus
there exists P ′2 = P ′′2 \a and P ′1 R2 P

′
2.

It follows similarly for the barbs and reductions on P2.

3. P1
·∼
τ
P2 ⇒ λ1.P1 + π.Q

·∼
τ
λ1.P1 + π.Q. Let us denote R1 the largest

barbed bisimulation for P1 and P2. We show that the relation R2 =R1

∪{π.Q, π.Q} is a barbed bisimulation. As above, we show that ∀α such
that (λ1.P1 + π.Q) ↓α then (λ1.P1 + π.Q) ↓α. It follows from the subcases
λ1.P1 ↓α (hence λ2.P2 ↓α) or π.Q ↓α. It follows similarly for the barbs and
reductions on P2.

Corollary 1. If a context C[·] does not contain the parallel operator, then for
all P , Q, C[P] 6 ·∼

τ
C[Q] implies P 6 ·∼

τ
Q.

13

Stated differently, this implies that discriminating contexts regarding barbed
congruence involve parallel composition. As we will focus on this relation, we
will only consider in the following the contexts to be parallel compositions:

C[·] := [·] ‖ P | [·]

This is handy to define RCCS context, but some subtleties remain. A context
has to become an executable process regardless of the process instantiated with
it. We say that a context has a coherent memory if it may backtrack up to the
context with an empty memory (similar to the Definition 6 of coherent processes).
We distinguish three types of contexts, depending on their memories:

• Contexts with an empty memory.

• Contexts with a non-empty memory that is coherent on its own.4 The
process that we instantiate with it can be

– incoherent in which case we conjecture that the term obtained after
instantiation is also incoherent,

– coherent on their own in which case it is possible to backtrack the
memory of the context up to the empty memory.

Hence, w.l.o.g., we consider contexts without memory and contexts with coherent
memories to be equivalent. These are the types of contexts that we use throughout
the article. However, a third case remains:

• Contexts that have a non-coherent memory. There exists incoherent terms
whose instantiation with an incoherent context is coherent. For instance,
C = 〈1, a, 0〉. g .∅ B P | [·] and R = 〈1, ā, 0〉. g .∅ B P ′ are incoherent
individually, but C[R] is coherent and can backtrack to g.∅ B a.P |
g.∅B ā.P ′. We leave this case as future work.

The “up to minor addition of g symbols” comes from a simple consideration
on the parallel composition in RCCS. A process with an empty memory compose
with a RCCS term if fork symbols are added to reflect the parallel composition.
For instance, two processes with an empty memory ∅B P and ∅B P ′ compose
and we obtain

g.∅B P | g.∅B P ′ ≡ ∅B (P | P ′)

instead of ∅B P | ∅B P ′, an incoherent process.
We define a rewriting function on RCCS processes, that adds a fork symbol

at the beginning of a memory. It allows a process with a memory to compose
with a context.

4Up to minor addition of g symbols, as explained later on.

14

Definition 12 (RCCS context). Define g(R) the operator that adds a fork
symbol at the beginning of the memory of each thread in R:

g(R1 | R2) = g(R1) | g(R2)

g(R\a) = (g(R))\a
g(mB P) = m′.g .∅B P where m = m′.∅

g(0) = 0

Define Cg[R] as follows

Cg[R] =

{
R if C[·] = [·]
g.∅B P | g(R) if C[·] = P | [·]

RCCS contexts are basically CCS context with additional fork symbols in
the memory of the context and in the memory of the process instantiated. We
now verify that Cg[R] is a coherent process, using the function ε(·) that erases
the memories from a term (Definition 7). Recall that the “origin of a process” R,
unique by Lemma 1, is denoted OR.

Proposition 2. For all R and Cg[·], ∅B C[ε(OR)] −→? Cg[R].

Proof. Let C[·] = P | [·] and OR = ∅B P ′, we get that

∅B C[ε(OR)] = ∅B
(
P | ε(OR)

)
= ∅B

(
P | P ′

)
≡ (g.∅B P) | (g.∅B P ′) (By distribution memory)

= (g.∅B P) | g(OR)

−→? (g.∅B P) | g(R) (Since OR −→? R)
= Cg[R]

Example 1. Let R = g.m.∅ B P1 | g.m.∅ B P2 and C[·] = P | [·]. Let us
rewind R to its origin:

R = g.m.∅B P1 | g.m.∅B P2

≡ m.∅B (P1 | P2)

 ? ∅B P ′

= OR

We instantiate the context with OR and redo the execution from the origin of R
up to R:

Cg[OR] = (g.∅B P) | (g.∅B P ′)
−→? (g.∅B P) |

(
m.g .∅B P1 | m.g .∅B P2

)
= (g.∅B P) | g(R)

= Cg[R]

Hence we have that Cg[OR] −→? Cg[R].

15

Once this delicate notion of context for reversible process is settled, extend-
ing the CCS barbs (Definition 10) and barbed congruence (Definition 11) are
straightforward. We’ll overload the notations ↓α and ·∼

τ
by using them for both

RCCS and CCS terms, but, since terms always indicate in which realm we are,
we consider this abuse to be harmless.

Definition 13 (RCCS barbs). We write R ↓α if there exists i ∈ I and R′ such
that R i:α−→ R′.

Definition 14 (Back-and-forth barbed congruence). A back-and-forth bisim-
ulation is a symmetric relation on coherent processes R such that if R R S,
then

R
τ
 R′ ⇒ ∃S′ s.t. S τ

 S′ and R′ R S′; (back)

R
τ−→ R′ ⇒ ∃S′ s.t. S τ−→ S′ and R′ R S′; (forth)

and it is a back-and-forth barbed bisimulation if, additionally,
R ↓a ⇒ S ↓a . (barbed)

We write R ·∼
τ
S if there exists R a back-and-forth barbed bisimulation such

that R R S.
The back-and-forth barbed congruence, denoted R ∼τ S, holds if for all context

Cg[·], Cg[OR]
·∼
τ
Cg[OS].

From the definition of R ∼τ S, the following lemma trivially holds.

Lemma 4. For all R and S, R ∼τ S ⇒ OR ∼τ OS.

However, the converse does not hold as R and S can be any derivative of the
same origin, as illustrated below.

Example 2. Let R = 〈1, a, b.Q〉.∅B P and S = 〈2, b, a.P 〉.∅BQ, with P 6 ·∼
τ
Q.

We have that OR ∼τ OS , as OR = OS , but R 6∼τ S, as P 6
·∼
τ
Q:

OR ∼τ OS

〈1, a, b.Q〉.∅B P 6∼τ 〈2, b, a.P 〉.∅BQ

1
:
a

2
: b

Note that even if the context is defined for any reversible process, we in-
stantiate the context with processes with an empty memory in Definition 14.
If instead we had defined R ∼τ S iff for all contexts, there exists R such that
Cg[R] R Cg[S], then Lemma 4 would not hold. We highlight this in the following
example.

Example 3. Let us consider the processes ∅B a.P +Q and ∅B a.P which can
do a transition on a to obtain respectively R = 〈1, a,Q〉B P and S = 〈1, a〉B P .
We have that R and S are back-and-forth barbed bisimular. As we are using
contexts without memory, there is no context able to backtrack on a.

16

OR = ∅B a.P +Q 6 ·∼
τ
∅B a.P = OS

R = 〈1, a,Q〉B P ∼τ 〈1, a〉B P = S

1 : a 1 : a

Remark 3 (On backward barbs). Let us informally argue that backward barbs
are not an interesting addition to a contextual equivalence. One can always
define ad-hoc barbs that potentially change the equivalence relations, however
we end up with relations that have no practical meaning. We consider below
another definition of barb [25, Definition 2.1.3], which gives an intuitive reading
and is not syntax-specific.

Let the tick (X /∈ N) be a special symbol denoting termination. A barb is an
interaction with a context that can do a tick immediately after:

P ↓α ⇐⇒ P | ᾱ.X τ−→ Q | X for some Q.

Note that the definition above implies that (i) the barb is an interaction with
a context that can terminate immediately after and (ii) the interaction blocks
the termination on the context side, i.e., no further transition is possible on that
side.

If we try to apply this definition to a backward barb then the tick has to be
in the memory of the context and blocked by another action, i.e., the context has
to be of the form C[·] ≡ [·] | (〈i, ᾱ, 0〉.〈X〉.∅B 0). This raises multiple problems:

1. Syntactically, X becomes a prefix, rather than a “terminal process”, i.e.,
terms of the form X.a.P appear. This contradict the intuition that this
symbol stands for termination.

2. In a situation where C[R]
i:τ
 R′ | 〈X〉.∅B0, the X symbol is not observable,

and R′ could continue its computation before X is popped from the
context’s memory. So we would have to add the content of the memory to
what is observable. But in that case, one might as well look directly in the
process’ memory if a label is present.

3. Lastly, defining the backward barb as the capability to do a backward step,
and having immediately after the forward barb, seems to be equivalent to
any reasonable definition of backward barb.

Thus we argue that the backward barbs are a contrived notion.

2. Configuration structures as a model of reversibility

Causal models take causality and concurrency between events as primitives.
In configuration structures, configurations stands for computational states and
the set inclusion represents the executions, so that in each state one can infer a

17

local order on the events based on the set inclusion. We introduce them5 and
their categorical representation modeling operations from process (Sect. 2.1).

One can also obtain a causal semantics of a process calculus, by decorating
its LTS. In Sect. 2.2 we briefly show how to interpret CCS terms in configuration
structures and how to decorate its LTS to derive causal information from the
transitions.

Lastly, we introduce configuration structure for a restricted class of RCCS
process, called singly labeled (Definition 26). They are essentially an address
in the configuration structure of the underlying, “original” CCS term. We then
introduce the LTS of those configuration structures and prove their operational
correspondence with the reversible syntax (Lemma 5).

2.1. Configuration structures as a causal model
Let E be a set, ⊆ be the usual set inclusion and C be a family of subsets of

E. For X ⊆ C, X is compatible, denoted X↑, if ∃y ∈ C finite such that ∀x ∈ X,
x ⊆ y.

Definition 15 (Configuration structures). A configuration structure C is a triple
(E,C,⊆) where E is a set of events, ⊆ is the set inclusion and C ⊆ P(E) is a
set of subsets satisfying:

∀x ∈ C, ∀e ∈ x,∃z ∈ C finite s.t.e ∈ z and z ⊆ x (finiteness)

∀x ∈ C, ∀e, e′ ∈ x, e 6= e′ ⇒

{
∃z ∈ C, z ⊆ x
e ∈ z ⇐⇒ e′ /∈ z

(coincidence freeness)

∀X ⊆ C if X↑ then
⋃
X ∈ C (finite completness)

∀x, y ∈ C if x ∪ y ∈ C then x ∩ y ∈ C (stability)

We denote 0 the configuration structure with E = ∅.

Intuitively, events are the actions occurring during the run of a process,
while configurations represents computational states. The first axiom, finiteness,
guarantees that for each event the set of causes is finite. Coincidence freeness
states that each computation step consists of a single event. Axioms finite
completness and stability are more abstract and are better explained on some
examples. Consider the structures in Figure 2: the structure 2a does not satisfy
the second axiom, as two events occur in a single step. The structure 2b does not
satisfy finite completeness. Intuitively, configuration structures cannot capture
“pairwise” concurrence. Finally, the structure 2c does not satisfies stability and
the intuition is that the causes of event e3 are either e1 or e2, but not both.

Notations 2. In a configuration C, if x, x′ ∈ C, e ∈ E, e /∈ x and x′ = x ∪ {e},
then we write x e−→ x′.

5Notably, the configuration structures we introduce and work with, are technically called
stable families. However, previous works on equivalences of reversible processes have adopted
the term configuration structures and we stick to this convention.

18

∅

{e1, e2}

(a)

∅

{e1}
{e2}

{e3}

{e1, e2}

{e1, e2, e3}

{e2, e3}

(b)

∅

{e1} {e2}

{e1, e2}{e1, e3} {e2, e3}

{e1, e2, e3}

(c)

Figure 2: Structures that are not coincidence free, finite complete and stable, respectively

Definition 16 (Labelled configuration structure). A labeled configuration struc-
ture C = (E,C, `) is a configuration structure endowed with a labeling function
from events to labels ` : E → L. A configuration x is closed if all events in x are
synchronizations (labeled with τ).

From now on, we will only consider configuration structures that are labeled,
so we omit that adjective in the following.

Now we define morphisms on configuration structures that permits to form
a category whose objects are configuration structures. Intuitively, morphisms
model the inclusion or refinement relations between processes. Process algebras’
operators are then extended to configuration structures, which makes it a modular
model.

Definition 17 (Category of configuration structures). A morphism of config-
uration structures f : (E1, C1, `1) → (E2, C2, `2) is a partial function on the
underlying sets f : E1 ⇀ E2 that is:

∀x ∈ C1, f(x) = {f(e) | e ∈ x} ∈ C2 (configurations preserving)
∀x ∈ C1,∀e1, e2 ∈ x, f(e1) = f(e2)⇒ e1 = e2 (local injective)
∀x ∈ C1,∀e ∈ x, `1(e) = `2(f(e)) (label preserving)

An isomorphism on configuration structures is denoted ∼=.

Definition 18 (Operations on configuration structures). Let C1 = (E1, C1, `1),
C2 = (E2, C2, `2) be two configuration structures and set E? = E ∪ {?}.

Product Let ? denote undefined for a partial function. Define the product of C1
and C2 as C = C1×C2, for C = (E,C, `), where E = E1×?E2 is the product
in the category of sets and partial functions6:

E1 ×? E2 = {(e1, ?) | e1 ∈ E1} ∪ {(?, e2) | e2 ∈ E2}
∪ {(e1, e2) | e1 ∈ E1, e2 ∈ E2}

6The category of sets and partial functions has sets as objects and functions that can take
the value ? as morphisms [26, Appendix A].

19

with p1 : E → E1 ∪ {?} and p2 : E → E2 ∪ {?}. Define the projections
π1 : (E,C) → (E1, C1), π2 : (E,C) → (E2, C2) and the configurations
x ∈ C such that the following holds:

∀e ∈ E, π1(e) = p1(e) and π2(e) = p2(e) (×1)
π1(x) ∈ C1 and π2(x) ∈ C2 (×2)
∀e, e′ ∈ x, if π1(e) = π1(e′) 6= ? or π2(e) = π2(e′) 6= ? then e = e′ (×3)
∀e ∈ x, ∃z ⊆ x finite s.t. π1(x) ∈ C1, π2(x) ∈ C2 and e ∈ z (×4)

∀e, e′ ∈ x, e 6= e′ ⇒ ∃z ⊆ x s.t.

π1(z) ∈ C1,

π2(z) ∈ C2

e ∈ z ⇐⇒ e′ /∈ z
(×5)

The labeling function ` is defined as follows:

`(e) =

`1(e1) if π1(e) = e1 and π2(e) = ?

`2(e2) if π1(e) = ? and π2(e) = e2

(`1(e1), `2(e2)) otherwise

The conditions (×1)–(×5) guarantee that C1 × C2 is the product in the category
of configuration structures, and that the projections π1 and π2 are morphisms.
In particular, (×3) ensures that the projections are local injective, (×4) and (×5)
enforce finiteness and coincidence-freeness axioms in the resulted configuration
structure.

Coproduct Define the coproduct of C1 and C2 as C = C1 +C2, for C = (E,C, `),
where E = ({1}×E1)∪({2}×E2) and C = {{1}×x | x ∈ C1}∪{{2}×x | x ∈
C2}. The labeling function ` is defined as `(e) = `i(ei) when ei ∈ Ei and
πi(ei) = e.

Restriction Let E′ ⊆ E and define the restriction of a set of events (E′, C ′, `′)
as (E,C, `) � E′ where x ∈ C ′ ⇐⇒ x ∈ C and x ⊆ E′.
The restriction of a name is then (E,C, `) � a := (E,C, `) � Ea where
Ea = {e ∈ E | `(e) ∈ {a, ā}}. For a1, . . . , an a list of names, we define
similarly � ∪16i6nEai .

Prefix Let α be the label of an event and define the prefix operation on con-
figuration structures as α.(E,C, `) = (e ∪ E,C ′, `′), for e /∈ E where
x′ ∈ C ′ ⇐⇒ ∃x ∈ C, x′ = x ∪ e and `′(e) = α, and ∀e′ 6= e, `′(e′) = `(e′).

Relabeling Given r : L → L′ a Relabeling function, define the relabeling of a
configuration structure C1 = (E1, C1, `1) as r ◦ C1 = (E1, C1, r ◦ `1).

and

20

Parallel composition Define parallel composition C =
(
r ◦ (C1 × C2)

)
� E as

the application of product, relabeling and restriction, with r and E defined
below.

• First, C1 × C2 = C3 is the product with C3 = (E3, C3, `3);
• Then, C′ = r ◦ C3 with r : L→ L ∪ {⊥} defined as follows:

r ◦ `3(e) =

`3(e) if `3(e) ∈ {a; ā}
τ if `3(e) ∈ {(a, ā); (ā, a)}
⊥ otherwise

• Finally, C = (E1 ×? E2, C3, r ◦ `3) � E is the resulted configuration
structure, where E = {e ∈ E3 | r ◦ `3(e) 6= ⊥}.

Example 4. Consider the following two configuration structures, respectively
C1 = (E1, C1, `1) and C2 = (E2, C2, `2):

∅

{e1}

`1(e1) = a

∅

{e2} {e′2}

`2(e2) = ā,
`2(e′2) = b

Then we can form their product C3 = C1 × C2 as

∅

{e1 × e2} {e1 × ?}{?× e2} {?× e′2} {e1 × e′2}

{e1 × ?, ?× e2} {e1 × ?, ?× e′2}

`3(e1 × e2) = (a, ā), `3(e1 × ?) = a
`3(?× e2) = ā, `3(?× e′2) = b

`3(e1 × e′2) = (a, b)

The parallel composition of C1 and C2 is built on top of C3, by

• removing the configuration {e1 × e′2}, since r ◦ `3(e1 × e′2) = ⊥,

• letting the label for (e1 × e2) be τ , since r ◦ `3(e1 × e2) = r(ā, a) = τ .

Definition 19 (Causality). Let x ∈ C and e1, e2 ∈ x for (E,C, `) a configuration
structure. Then we say that e1 happens before e2 in x or that e1 causes e2 in x,
written e1 6x e2, iff ∀x2 ∈ C, x2 ⊆ x, e2 ∈ x2 ⇒ e1 ∈ x2.

21

Morphisms on configuration structures reflect causality. Let f : C1 → C2 be
a morphism and x ∈ C1 be a configuration. Then

∀e1, e2 ∈ x, if f(e1) 6f(x) f(e2) then e1 6x e2.

However, morphisms do not preserve causality in general. In the case of a
product we can show that all immediate causalities are due to one of the two
configuration structures. Stated differently, a context can add but cannot remove
causality in the process.

Definition 20 (Immediate causality). Let x be a configuration in a configuration
structure, and e, e′ ∈ x be two events. We say that e is an immediate cause
for e′ in x, and write e→x e

′, if e <x e′ and @e′′ ∈ x such that e <x e′′ <x e′.

The reader should remark that we now have two orders, one on events, that
we just defined, and one on memory events (or memory identifiers), the structural
causality i1 <S3

i2 (Definition 8).

Proposition 3. Let x ∈ C1 × C2. Then e1 →x e2 ⇐⇒ either π1(e1) <π1(x)

π1(e2) or π2(e1) <π2(x) π2(e2).

Proof. The proof [2, Proposition 6] follows by contradiction, using that if x is a
configuration in C and if e ∈ x is such that ∀e′ ∈ x, e 6<x e′, then x \ {e} is a
configuration in C.

2.2. Operational semantics, correspondence and equivalences
Configuration structures are a causal model for CCS [19] in which the

computational states are the configurations and the forward executions are
dictated by set inclusion. To show the correspondence with CCS (Lemma 5),
one defines an operational semantics on configuration structures (Definition 22)
that erases the part of the structure that is not needed in future computations.
To define a reversible semantics on configuration structures, a second LTS
is introduced (Definition 23), that instead of being defined on configuration
structures is defined on the configurations of a configuration structure. Thus
forward and backward moves are simply the set inclusion relation and its opposite,
respectively.

The soundness of the model is proved by defining an operational semantics
on configuration structures and showing an operational correspondence between
the two worlds.

Definition 21 (Encoding a CCS term). Given P a CCS term, its encoding
[[P]] as a configuration structure is built inductively, using the operations of
Definition 18:

[[a.P]] = a.[[P]] [[ā.P]] = ā.[[P]]

[[P | Q]] = [[P]] | [[Q]] [[P +Q]] = [[P]] + [[Q]]

[[P\a]] = [[P]] � Ea [[0]] = 0

22

Definition 22 (LTS on configuration structures [27, p. 131]). Let C = (E,C, `)
be a configuration structure. Define C \ {e} = (E \ {e}, C ′, `′) where `′ is the
restriction of ` to the set E \ {e} and

x ∈ C ′ ⇐⇒ x ∪ {e} ∈ C.

We easily make sure that C \ {e} is also a configuration structures.
We define a LTS on configuration structures thanks to the relation C e−→

C \ {e}, and we extend the notation to C `(e)−→ C \ {e} and to C x−→ C \ x, for x a
configuration.

Lemma 5 (Operational correspondence between a process and its encoding).
Let P a process and [[P]] = (E,C, `) its encoding.

1. ∀α, P ′ such that P α−→ P ′, ∃e ∈ E such that `(e) = α and [[P]]\{e} ∼= [[P ′]];

2. ∀e ∈ E, if {e} ∈ C then ∃P ′ such that P
`(e)−→ P ′ and [[P]] \ {e} ∼= [[P ′]].

Proof. This is just a reformulation of a classical result [27, Theorem 2].

The above lemma shows that labeled transitions are in correspondence, but
labels are just a tool for compositionality. The main result is that a process and
its encoding simulate each others reductions. The following is a direct corollary
from the previous lemma.

Theorem 1 (Operational correspondence with CCS). Let P a process and
[[P]] = (E,C, `) its encoding.

1. ∀P ′ such that P τ−→ P ′, ∃{e} ∈ C closed such that [[P]] \ {e} ∼= [[P ′]];

2. ∀e ∈ E, {e} ∈ C closed, ∃P ′ such that P τ−→ P ′ and [[P]] \ {e} ∼= [[P ′]].

Multiple equivalence relations on configuration structures have been defined
and studied [12, 13, 15, 16, 28]. Among them, hereditary history preserving
bisimulation (HHPB) [14] equates structures that simulate each others’ forward
and backward moves and thus connects configuration structures to reversibility.
It is considered a canonical equivalence on configuration structures as it respects
the causality and concurrency relations between events and admits a categorical
representation [29].

Those connections between reversibility and causal models shed a new light on
what help are the meaningful equivalences on reversible processes. Consequently,
one applies them in the operational setting. We begin by modifying the definition
of our LTS on configuration structures to include backward moves as well.

Definition 23 (Reversible LTS on configuration structures). Consider (E,C, `)

a configuration structure. For x ∈ C, e ∈ E define x e−→ x′ iff x′ = x ∪ {e} and
x

α−→ x′ if additionally, `(e) = α. The backward moves are defined as x e
 x′

and x α
 x′ if x = x′ ∪ {e} and `(e) = α.

Denote x
e
� x′ when either x e−→ x′ or x e

 x′.

23

Such a LTS naturally satisfies elementary criterion that one would expect
from a LTS [2, Chap. 2]. This notion should not be mistaken with the immediate
causality e→x e

′ Definition 20.
The definition of HHPB below uses a label and order preserving bijection

defined on two configurations, that is, sets of events equipped with a labeling
function and an order relation, i.e., a causality (Definition 19), on events. La-
bel preserving functions are introduced in Definition 17, and we define order
preserving functions in a similar manner.

Definition 24 (Order preserving functions). Let x1, x2 be two sets of events,
and let 6x1

and 6x2
, be order relations on events in x1, and x2 respectively. A

function f : x1 → x2 is order preserving iff e 6x1
e′ ⇒ f(e) 6x2

f(e′), for all
e, e′ ∈ x1 such that f(e) and f(e′) are defined.

Definition 25 (HHPB [14, Definition 1.4]). A hereditary history preserving
bisimulation on labeled configuration structures is a symmetric relation R⊆
C1 × C2 × P(E1 × E2) such that (∅, ∅, ∅) ∈ R and if (x1, x2, f) ∈ R, then

f is a label and order preserving bijection between x1 and x2

∀x′1 s.t. x1
e1−→ x′1 ⇒

∃x′2 ∈ C2 s.t. x2
e2−→ x′2 and f = f ′ � x1, (x

′
1, x
′
2, f
′) ∈ R

∀x′1 s.t. x1
e1 x′1 ⇒

∃x′2 ∈ C2 s.t. x2
e2 x′2 and f ′ = f � x2, (x

′
1, x
′
2, f
′) ∈ R

It is known [7] that hereditary history preserving bisimulation corresponds to
the back-and-forth bisimulation (Definition 14), in the following sense: CCSK [30]
is proven to satisfy the “the axioms of reversibility” [31, Definition 4.2]), so that
its LTS is prime. Then, this LTS is represented as a process graph, on which the
forward-reverse bisimulation [7, Definition 5.1]—our back-and-forth bisimulation
(Definition 14)— is defined. Finally, configuration graphs and hereditary history-
preserving bisimulation are defined from configuration structures, and both
relations are proven to coincide [7, Theorem 5.4, p. 105].

2.3. Configuration structures for RCCS
All the possible future behaviours of a process without memory are present

in its encoding as a configuration structure. All alike, we want our encoding of
processes with memory to record both their past and their future, so that they
can evolve in both directions, as reversible processes do. To this end, we encode
RCCS terms as a configuration in the configuration structure of their origins
(Definition 27). Then, we show an operational correspondence between RCCS
terms and their encoding (Lemma 6).

To determine which configuration corresponds to the computational state
of the term, we need to uniquely identify a process from its past and future.
However, as the following example illustrates, this is not always possible.

24

∅

{e1} {e′′1}

{e1, e
′
1}

`(e1) = `(e′′1) = a,
`(e′1) = b

(a) a.b+ a

∅

{e2} {e′′2}

{e2, e
′
2} {e′′2 , e′′′2 }

`(e2) = `(e′′2) = a,
`(e′2) = `(e′′′2) = b

(b) a.b+ a.b

∅

{e3} {e′′′3 }

{e3, e
′
3} {e3, e

′′
3}

{e3, e
′
3, e
′′
3}

`(e3) = `(e′3) = a,
`(e′′3) = c, `(e′′′3) = b

(c) a.(a|c) + b

Figure 3: Encoding RCCS in configuration structures

Example 5. 1. The process P = a.b+ a is interpreted as the configuration
structure in Figure 3a. Let us consider the execution ∅ B P i:a−→ R, for
some i. To determine which of the configurations labeled a correspond to
R we have to consider the future of R as well.

2. Hence we choose a configuration that respects the past and the future
of R, but such a configuration might not be unique. Let Q = a.b + a.b
be a process whose configuration structure is in Figure 3b. For the trace
∅ B P i:a−→ R there is no way to choose between the two configurations
labeled a.

The situation of example 5 can be generalized to any process whose reduction
may lead to a process of the form a.P | a.Q or a.P + a.Q. The first kind of
process is ruled out by forbidding auto-concurrency [32, Definition 9.5], but we
need a stronger condition, a sort of auto-conflict, to forbid the second type of
process. We then consider a restricted class of processes, defined below.

Definition 26 (Singly labeled configuration structures and processes). A config-
uration structure C is singly labeled, or without auto-concurrency nor auto-conflict
if ∀x ∈ C and ∀e, e′ /∈ x we have that(

x
e−→ y, x

e′−→ y′ and `(e) = `(e′)
)
⇒ e = e′.

A CCS process P (resp. a RCCS process R) is singly labeled if [[P]] (resp. [[ε(OR)]])
is.

Remark that being singly labeled does not mean that each label has to occurs
only once in a process: whereas a | b.a is not singly labeled, since after firing b
two transitions labeled a can be fired, a.a and a.b+b are singly labeled. However,
a syntactical definition of this restriction cannot be inductively defined, since P
and Q might be singly labeled, but not P | Q nor P +Q.

25

The following encoding, and all the results that use it, require the process
to be singly labeled (on top of being coherent, if they are reversible). This
restriction could probably be removed at the price of a tagging of the occurrences
of names, maybe in the spirit of the localities [33].

We are now ready to define the encoding of a singly labeled, coherent, re-
versible process R as a tuple made of a configuration structure and a configuration.
Remember that R has a unique origin OR (Lemma 1), whose empty memory
can be removed (Definition 7) to obtain a CCS process that can be encoded
as a configuration structure (Definition 21). Hence, we obtain a configuration
structure [[ε(OR)]] which contains all the possible computation starting from OR,
but doesn’t account for the transitions that led to R. However, we know there
must exists a configuration x ∈ [[ε(OR)]] such that

• if R i:α−→ S, then there exists y ∈ [[ε(OR)]] and e such that y = x ∪ {e} and
`(e) = α.

• if R i:α
 S, then there exists y ∈ [[ε(OR)]] such that x = y ∪ {e}.

Stated differently, x is the configuration reflecting the future and the past of
R, and we’re calling it its address. This address is determined by the trace
σ : OR −→? R.

To define the address of a process using its trace from the origin, first remark
that if the trace is empty, i.e., R is OR, then the address of R is ∅. Otherwise,
we need to follow the trace σ up in the structure. This is the initial step in the
following definition (Equation 3). To do so, we need a function called ad[[ε(OR)]]

which takes three arguments–the current address x of a process R1, a bijection ∂
between events in x and memory events in R1, and a trace σ : R1 −→? R2–and
returns the corresponding address of R2. The bijection ∂ ensures that events
in x and R1 have the same causal order. For example, let mB a.b.P | b.P ′ be
a process that communicates, first on channel a and then on channel b. To
interpret the resulting process, one needs to know which b has been fired, i.e.,
to know the causal relation between the two communications, on a and b. This
information can be retrieved from the memory of a process, using structural
causality (Definition 8).

Definition 27 (Encoding RCCS processes in configuration structures). Let R
be a singly labeled and coherent process. Let C = [[ε(OR)]] be the encoding
(Definition 21) of its “memory-less” origin (Definition 7). The encoding of R
as a configuration structure is defined by induction on the trace (Definition 2)
σ : OR −→? R, as

[[R]]σ = (C, adC(∅, ∅, σ)) (3)

Before defining the function adC , let us remark that for all trace σ : R1 −→?

R3, either σ = ε is the empty trace, and R1 = R3, either there exists R2, a

26

transition t : R1
i:α−→ R2 and a trace σ′ : R2 −→? R3 such that σ = t;σ′.

adC(x, ∂, ε) = x (4)
adC(x, ∂, t;σ

′) = adC(x ∪ {e}, ∂ ∪ {e↔ i}, σ′) (5)

where

(a) `(e) = α

(b) x ∪ {e} ∈ C
(c) j <R2

i ⇐⇒ ∂(j) <x∪{e} e

(d) [[ε(R2)]] =
(
C \ (x ∪ {e})

)
Where ∂ is a bijection between events in a configuration of C and events

identifiers in the memory of R2. Hence, i and j are event identifiers, uniquely
identifying event memories in the memory of R, and compared with the structural
causality <R2

(Definition 8). On the other hand, ∂(j) and e are events, compared
using the immediate causality order <x∪{e} (Definition 20).

Equation 5 defines a step of computation of the function adC(x, ∂, σ). Given
that the current process in the trace is R1 with address x and a bijection ∂, the
next configuration consists in x ∪ {e}, for some event e, such that x ∪ {e} is
a valid configuration (condition (b)). Which event e is chosen depends on the
transition t : R1

i:α−→ R2 (conditions (a) and (c)). Finally, to handle process as
the one in example 5, we also check that the future of R2 corresponds to the
future of x∪ {e} (condition (d)). The computation stops when we reach the end
of the trace (Equation 4).

We show in Proposition 4 that the function is well defined, i.e., for every
singly labeled process R and for every trace σ : OR −→? R there exists a
unique configuration in [[ε(OR)]]σ defined as above. In the following, we won’t
name traces and will just write adC(x, f,R −→? S) instead of the more correct
adC(x, ∂, σ) for σ : R −→? S. Proposition 5 will prove that the encoding is in
fact independent of the trace considered.

Example 6. A first simple example is the encoding of a process with an empty
memory. Let S = ∅B P , ε(OS) = P and [[S]]ε = ([[P]], ∅).

Let us show how to compute the encoding of the process

R = 〈2, a, 0〉.g .〈1, a, b〉B 0 | g.〈1, a, b〉B c.

We backtrack to its origin and obtain OR = ∅ B a.(a | c) + b. The term is
encoded into the configuration structure in Figure 3c. We apply the function
adC(∅, OR −→? R) on the trace

∅B a.(a | c) + b
1:a−→ 〈1, a, b〉B (a | c)
≡ (g.〈1, a, b〉B a) | (g.〈1, a, b〉B c)

2:a−→ 〈2, a, 0〉.g .〈1, a, b〉B 0 | g.〈1, a, b〉B c
= R

The configuration corresponding to R is then {e3, e
′
3}.

27

Proposition 4 (Soundness of the RCCS encoding). Let P be a singly labeled
process and C = [[P]] its encoding. Then for any R reachable from ∅B P there
exists a unique x ∈ C such that adC(∅, ∅,∅B P −→? R) = x.

Proof. Remark that ∅ B P = OR and that from Lemma 2, we can consider
the trace OR −→? R to be only forward. We proceed by induction on the
trace OR −→? R. For the inductive case we have the trace OR −→? Rn and
adC(∅, ∂n, OR −→? Rn) = xn, for xn ∈ C, ∂n a label and order preserving
bijection between xn and Rn, and such that [[ε(Rn)]] = C \ xn. We have to show
that for the trace OR −→? Rn

i:a−→ Rn+1 there exists a unique configuration
xn+1 ∈ C such that

adC(∅, ∅, OR −→? Rn
i:α−→ Rn+1) = xn+1

and
[[ε(Rn+1)]] = C \ xn+1.

We have that

adC(∅, ∅, OR −→? Rn
i:α−→ Rn+1) = adC(xn, ∂n, Rn

i:α−→ Rn+1)

Hence we have to show that there exists a unique e ∈ C such that `(e) = α,
xn+1 = xn ∪ {e}, ∂n+1 = ∂n ∪ {e↔ i} and we have and

[[ε(Rn+1)]] = C \ (xn ∪ {e}).

However, if such an e exists then e ∈ [[ε(Rn)]] and

C \ (xn ∪ {e}) = [[ε(Rn)]] \ {e}.

Hence we reason on the transition Rn
i:α−→ Rn+1 to show that there exists a

unique e ∈ [[ε(Rn)]] such that [[ε(Rn+1)]] = [[ε(Rn)]] \ {e}. We consider only the
case α = a, the rest being similar. Using structural congruence it is possible to
rewrite Rn and Rn+1 as follows

Rn ≡ (mB a.P1 | R2)\(b1 . . . bn) Rn+1 ≡ (m′ B P1 | R2)\(b1 . . . bn)

and hence, for ε(R2) = P2,

ε(Rn) = (a.P1 | P2)\(b1 . . . bn) ε(Rn+1) = (P1 | P2)\(b1 . . . bn).

We have then to show that

[[(P1 | P2)\(b1 . . . bn)]] = [[(a.P1 | P2)\(b1 . . . bn)]] \ {e}.

From Lemma 5 such an event exists. To show its uniqueness, we need to
consider several cases on Rn. We only consider the case where we can rewrite
Rn as Rn ≡ m1 B a.P1 |

(
m2 B a.P2 | R2

)
. Either m1 = m2, in which case

the process exhibits auto-concurrency, either m1 6= m2, in which case the

28

condition j <Rn+1 i ⇐⇒ ∂n(j) <xn∪{e} e from the definition of the encoding
(Definition 27), points to either m1 or m2.

Let us prove that ∀x ∈ [[(P1 | P2)\(b1 . . . bn)]], x ∈ [[(a.P1 | P2)\(b1 . . . bn)]] \
{e}. The other direction is similar. Let us unfold the encoding of Definition 21
using the operations on configuration structures of Definition 18.

[[(P1 | P2)\(b1 . . . bn)]] = ([[P1]]× [[P2]]) � ∪16i6nEbi

[[(a.P1 | P2)\(b1 . . . bn)]] = ([[a.P1]]× [[P2]]) � ∪16i6nEbi

If x ∈ ([[P1]]× [[P2]]) � ∪16i6nEbi then

∀e ∈ x, `(e) /∈ {bi, b̄i, 0}. (6)

Hence x ∈ ([[P1]] × [[P2]]). Let π1, π2 be the two projections defined by the
product. Then

π1(x) ∈ [[P1]] and π2(x) ∈ [[P2]]. (7)

As π1(x) ∈ [[P1]], and from the definition of [[a.P1]] we have that ∃e1, `(e1) = a
and such that {e1} ∪ π1(x) ∈ a.[[P1]]. From Equation 7 we have that ∃x2 ∈
a.[[P1]]×[[P2]] such that π1(x2) = {e1}∪π1(x) and π2(x2) = π2(x). Hence ∃!e such
that π1(e) = e1, π2(e) = ? and x2 = {e}∪x. From Equation 6 we have that x2 ∈
(a.[[P1]]× [[P2]]) � ∪16i6nEbi . We infer that if x∪{e} ∈ (a.[[P1]]× [[P2]])\ (b1 . . . bn)
then x ∈ [[(a.P1 | P2) \ (b1 . . . bn)]] \ {e}.

From [[ε(R)]] = C \ xn, we have that ∀y ∈ [[ε(R)]], y ∪ xn ∈ C. In particular
xn ∪ {e} ∈ C.

Let us denote xn+1 = xn ∪ {e}. Remains to show that j <Rn+1
i ⇐⇒

∂(j) <xn+1 e. We show the implication j <Rn+1 i⇒ ∂n(j) <xn+1 e and consider
the immediate order for <Rn+1 , as the order is transitive. From j <Rn+1 i, we
have that 〈i, a〉.〈j, b〉 ∈ Rn+1, hence we retrieve a process Rk where b.a.P ′ ∈ Rk.
Hence the events ∂n(j) and ∂n(i) are causally dependent in the configuration
structure of [[ε(Rk)]], and therefore causally dependent in C. For the other
direction ∂n(j) <xn+1

e⇒ j <Rn+1
i we show that `(∂(j)) and `(e) are causal in

the origin process P , hence they are causally dependent in the memory of Rn+1.
Hence adC(∅, OR −→? Rn

a−→ Rn+1) = xn ∪ {e} with [[ε(Rn+1)]] = [[ORn
]] \

(xn ∪ {e}).

Remark 4 (On encoding RCCS). Another encoding exists [13], but it is not
compositional, since [[P1 | P2]] is not defined as an operation on [[P1]] and [[P2]].
Compositionality is important for the definition of contexts in configuration
structures, in particular for the definition of congruence (Definition 30).

Let us now define a transition relation on configuration structures, useful
in showing the operational correspondence between terms of RCCS and their
encoding.

Definition 28 (Reversible LTS in configuration structures). Define ([[P]], x)
`(e)−→

([[P]], x ∪ {e}) for x ∪ {e} ∈ [[P]]. Similarly to Definition 3 we define ([[P]], x)
`(e)

([[P]], x \ {e}), for some e such that x \ {e} ∈ [[P]].

29

We defined in Definition 27 the encoding of a process parametrically on a
trace. The following proposition shows that any trace from OR up to R leads to
the same encoding.

Proposition 5. For all singly labeled processes R there exists x a configuration
in [[ε(OR)]] such that ∀σ : OR −→? R, [[R]]σ = x holds.

Proof. Denote C = [[ε(OR)]] = (E,C, `). From the definition of [[R]]σ it suffices to
show that for any configuration x, y ∈ C such that there exist a label and order
preserving bijection f between them and such that C \ x = C \ y, x = y holds.

We prove it by induction on the size of x and y. Suppose that there exist
two events e, e′ such that y = x ∪ {e} and z = x ∪ {e′} are configurations of C
as well, with f : y ↔ z. Since R is singly labeled (Definition 26), if `(e) = `(e′),
then e = e′.

Example 7. Consider the configuration structure in Figure 3c, encoding the
process P = a.(a | c) + b. The process

S =
(
〈2, a, 0〉.g .〈1, a, b〉B 0

)
|
(
〈3, c, 0〉.g .〈1, a, b〉B 0

)
can be reached on the trace σ1 : ∅BP 1:a−→ 2:a−→ 3:c−→ S or σ1 : ∅BP 1:a−→ 3:c−→ 2:a−→ S.
However both traces lead to the same encoding of S.

Hence we write [[R]] instead of [[R]]σ. It is an essential property to prove the
existence of a bisimulation relation between a process and its encoding.

Lemma 6 (Operational correspondence between a R and [[R]]). Let R a process
and [[R]] = (C, x) its encoding.

1. ∀α, S and i ∈ I such that R i:α−→ S then [[R]]
α−→ [[S]];

2. ∀α, S and i ∈ I such that R i:α
 S then [[R]]

α
 [[S]];

3. ∀e ∈ E, (C, x)
`(e)−→ (C, x∪ {e}) then ∃S, such that for some i ∈ I, R i:α−→ S

and [[S]] = (C, x ∪ {e}).

4. ∀e ∈ E, (C, x)
`(e)
 (C, x \ {e}) then ∃S, such that for some i ∈ I, R i:α

 S
and [[S]] = (C, x \ {e}).

Proof. First, we should remark that in item 3 (resp. item 4), `(e) = α is enforced,
since [[S]] = (C, x ∪ {e}) (resp. [[S]] = (C, x \ {e})).

1. As R i:α−→ S, OR = OS , we have that [[S]] = (C, xs), where xS =

adC(∅, ∂, OR −→? S) = adC(∅, ∂, OR −→? R
α−→ S) = xR ∪ {e} by

Proposition 4. As [[R]] = (C, xR) it follows that (C, xR)
α−→ (C, xS).

2. The proof for the backward direction is similar except that it uses the
trace up to R. It uses Proposition 5, which allows us to backtrack on any
path from the emptyset and leading to xR.

30

3. From (C, x)
`(e)−→ (C, x ∪ {e}) we have that x ∪ {e} ∈ C. Then {e} ∈ C \ x.

From [[R]] = (C, x) we have that C \ x = [[ε(R)]], hence {e} ∈ [[ε(R)]]. We

use Lemma 5 and obtain that ∃P such that ε(R)
`(e)−→ P . Then due to

the strong bisimulation between a RCCS term and its corresponding CCS
term in Lemma 3, we have that, for some i, R i:α−→ S, where ε(S) = P .
That [[S]] = (C, x∪ {e}) follows from a similar argument to above and from
Proposition 5.

4. It is similar to the case above.

3. Contextual equivalence on configuration structures

In this section we introduce a notion of context for the configuration struc-
tures and then adapt the back-and-forth barbed bisimulation to configuration
structures (Definition 30). We define hereditary history preserving bisimulation
and use two families of relations, denoted Fi and Bi, to inductively approximate
the bisimulation (Lemma 8). We use these relations to show that two processes
are barbed congruent whenever their denotations are in the HHPB relation (The-
orem 2). Once the HHPB has been proven to be a congruence (Proposition 9),
one direction is straightforward, whereas the other is more technical and, as in
CCS [24], follows by contradiction. It uses the relations Fi and Bi (Definition 34
and Definition 35) to build contexts that discriminate processes that are not
bisimilar.

3.1. Contexts for configuration structures
Contexts for configuration structures have never been defined as it is not

clear what a configuration structure with a hole could be. However, if a structure
C has an operational meaning, i.e., if there exists P a process such that C = [[P]],
we use a CCS context C[·] to build a configuration structure [[C[P]]].

When analyzing the reductions of a process in context, we need to know the
contribution the process and the context have in the reduction. To this aim we
associate to the context C[·] instantiated by a process P a projection morphism
πC,P : [[C[P]]]→ [[P]] that retrieve in [[C[P]]] the parts of a configuration belonging
to [[P]].

Following Proposition 1, we continue to consider only context made of parallel
compositions, but the following definition can be extended to arbitrary contexts [2,
Definition 46].

Definition 29. Let C[·] a context, and P a process. The projection πC,P :
[[C[P]]]→ [[P]] is defined on the structure of C as follows:

• if C[·] = C ′[·] | P ′ then πC,P : [[C ′[P] | P ′]]→ [[P]] is defined as πC,P (e) =
πC′,P (π1(e)), where π1 : [[C ′[P] | P ′]]→ [[C ′[P]]] is the projection morphism
defined by the product in Definition 18;

• if C[·] = [·] then πC,P : [[C[P]]]→ [[P]] is the identity.

31

We naturally extend πC,P to configurations, and prove by case analysis that
πC,P : [[C[P]]]→ [[P]] is a morphism.

3.2. Relation induced by barbed congruence on configuration structures
We define a relation on configuration structures that have an operational

meaning and we show it is the relation induced by the barbed congruence in
RCCS (Definition 14). We call the relation barbed back-and-forth congruence,
to highlight its meaning, though it is not strictly speaking a congruence on
configuration structures.

Definition 30 (Back-and-forth barbed congruence on configuration structures).
A back-and-forth barbed bisimulation on configuration structures is a symmetric
relation R⊆ C1 × C2 such that (∅, ∅) ∈ R, and if (x1, x2) ∈ R, then

x1
e1 x′1 ⇒ ∃x′2 ∈ C2 s.t. x2

e2 x′2,
with `1(e1) = `2(e2) = τ and (x′1, x

′
2) ∈ R;

(back)

x1
e1−→ x′1 ⇒ ∃x′2 ∈ C2 s.t. x2

e2−→ x′2,
with `1(e1) = `2(e2) = τ and (x′1, x

′
2) ∈ R;

(forth)

if ∃e1 ∈ E1 s.t. `1(e1) 6= τ and x1
e1−→ x′1 then ∃x′2 ∈ C2

s.t. x2
e2−→ x′2, with `1(e1) = `2(e2).

(barbed)

Let C1
·∼
τ
C2 if and only if there exists a back-and-forth barbed bisimulation

between C1 and C2.
Define ∼τ the back-and-forth barbed congruence induced on configuration

structures as a symmetric relation on configuration structures that have an
operational meaning such that

[[P1]] ∼τ [[P2]] ⇐⇒ ∀C, [[C[P1]]]
·∼
τ

[[C[P2]]].

We now prove that this relation is the relation induced on the encoding of
processes by the barbed back-and-forth congruence (Definition 14). We begin
by proving it in the non-contextual case. We remind the reader that, as we are
going to manipulate encoding of RCCS terms, some restrictions on the terms
applies (Definition 26).

Proposition 6. For all P and Q, ∅B P ·∼
τ
∅BQ ⇐⇒ [[P]]

·∼
τ

[[Q]].

Proof. ⇒ Let RCCS be a back-and-forth barbed bisimulation between P and Q.
We show that the following relation

R = {(x1, x2) | x1 ∈ [[P]], x2 ∈ [[Q]],∃R,S s.t. OR = P,
OS = Q,R RCCS S and [[R]] = ([[P]], x1), [[S]] = ([[Q]], x2)}

is a back-and-forth barbed bisimulation between [[P]] and [[Q]].

32

We have that (∅, ∅) ∈ R, let (x1, x2) ∈ R. We have to show that the
conditions in Definition 30 hold. Suppose that x1

e1−→ x′1 = x1 ∪ {e1}, for
`(e1) = τ .

x1
e1−→ x′1 ⇒ ([[P]], x1)

`(e1)−→ ([[P]], x′1) (From Definition 28)

⇒ R
i:`(e1)−→ R′ s.t. [[R′]] = ([[P]], x′1) (From Lemma 6)

⇒ S
i′:τ−→ S′ (From R RCCS S)

⇒ ([[Q]], x2)
`(e2)−→ ([[Q]], x′2) (From Lemma 6)

with `(e2) = τ . We have then (x′1, x
′
2) ∈ R.

We proceed in a similar manner to show that conditions on the backward
transitions and on the barbs hold.

⇐ Let RConf be a back-and-forth barbed bisimulation between [[P]] and [[Q]].
We show that the following relation

R = {(R,S) | ε(OR) = P, ε(OS) = Q and [[R]] = ([[P]], x1),
[[S]] = ([[Q]], x2), with (x1, x2) ∈ RConf}

is a back-and-forth barbed bisimulation between P and Q. Let (R,S) ∈ R,
the following holds:

R
i:τ−→ R′ ⇒ ([[P]], x1)

`(e1)−→ ([[P]], x′1) (From Lemma 6)

⇒ ([[Q]], x2)
`(e2)−→ ([[Q]], x′2) (From (x1, x2) ∈ RConf)

⇒ S
i′:τ−→ S′ (From Lemma 6)

where x′1 = x1 ∪ {e1}, x′2 = x2 ∪ {e2} and `(e1) = `(e2) = τ . We have that
OR′ = P , OS′ = Q, [[R′]] = ([[P]], x′1), [[S′]] = ([[Q]], x′2) and (x′1, x

′
2) ∈ RConf.

Hence (R′, S′) ∈ R.
To prove that the remaining conditions on the pair (R,S) holds as well is
similar.

The contextual version of the proposition for reversible processes is straight-
forward.

Lemma 7. Given two singly labeled processes R and S, OR ∼τ OS ⇐⇒
[[ε(OR)]] ∼τ [[ε(OS)]].

Proof.

OR ∼τ OS ⇐⇒ ∀C[·], Cg[OR]
·∼
τ
Cg[OS] (From Definition 14)

⇐⇒ ∀C[·],∅B C[ε(OR)]
·∼
τ
∅B C[ε(OS)] (From Definition 12)

⇐⇒ ∀C[·], [[C[ε(OR)]]]
·∼
τ

[[C[ε(OS)]]] (From Proposition 6)
⇐⇒ [[ε(OR)]] ∼τ [[ε(OS)]] (From Definition 30)

33

∅

{e1} {e′1}

`1(e1) = `1(e′1) = a

∅

{e2} {e′2}

`2(e2) = `2(e′2) = a

f2

f1

Figure 4: Two possible hereditary history preserving bisimulations

3.3. Inductive characterization of HHPB
Similarly to the proof in CCS, the correspondence between a contextual

equivalence and a non-contextual one necessitates to approximate HHPB with
(a family of) inductive relations defined on configuration structures. If we are
interested only in the forward direction (as in CCS), the inductive reasoning
starts with the empty set, and constructs the bisimilarity relation by adding pairs
of configurations reachable in the same manner from the empty set. However, to
approximate HHPB, we need to have an inductive reasoning on the backward
transition as well (Definition 35). These relations are of major importance to
prove our main theorem (Theorem 2), as they re-introduce the possibility of an
inductive reasoning thanks to a stratification of the HHPB relation.

Definition 31 (Hereditary history preserving bisimilarity). The hereditary
history preserving bisimilarity, denoted ∼, is the union of all HHPB relations
(Definition 25).

Remark 5 (On the uniqueness of hereditary history preserving bisimilarity).
Writing C1 ∼ C2 is an abuse of notation as hereditary history preserving bisimu-
lations are defined on C1×C2×P(E1×E2). Also the union of all bisimulations
may contain triples that do not have “compatible” bijections. For instance, we
have two possible bisimulations between the configuration structures of Figure 4:

f1 = {e1 ↔ e2, e
′
1 ↔ e′2} f2 = {e1 ↔ e′2, e

′
1 ↔ e2}

However, the bisimilarity relation contains both tuples ({e1, e2}, {e′1, e′2}, f1) and
({e1, e2}, {e′1, e′2}, f2).

We give an inductive characterization of HHPB by reasoning on the structures
up to a level: we ignore the configurations that have greater cardinality than
the considered level. HHPB is then the relation obtained when we reach the top

34

level. Hence we are able to detect, whenever two configuration structures are
not HHPB, at which level the bisimulation does no longer hold.

In the following, Card(x) denotes the cardinality of a set x.

Definition 32 (Maximal and top configurations). A configuration x ∈ C is
maximal if there is no configuration y ∈ C such that x (y. If moreover ∀y ∈ C,
Card(y) 6 Card(x) then x is a top configuration.

Definition 33 (Cardinality of a configuration structure). The cardinality of a
configuration structure C, denoted Card(C), is the maximum cardinality of any
of its top configurations:

Card(C) = max{Card(x) | x is a top configuration in C}.

We use two families of relations, denoted Fi, for the forward transitions, and
Bi, for the backward ones. The relations are parametrized by the cardinality
of the configurations, that is Fi (or Bi) relates configurations of cardinality i,
and only of cardinality i. Intuitively, it relates processes that have performed
exactly i computation steps. But Fi relates processes using their future actions,
while the relations Bi checks the backwards steps.

Definition 34 (The forward relations Fi). Given C1, C2 two configuration
structures, for all x1 ∈ C1, x2 ∈ C2, i ∈ N, f : x1 → x2, we define the family of
relations Fi as follows:

(x1, x2, f) ∈ Fi ⇐⇒

Card(x1) = Card(x2) = i, x1 and x2 are maximal, and
f is a label preserving bijection
or

∀x′1,∀e1, x1
e1−→ x′1,∃x′2,∃e2, x2

e2−→ x′2 and f = f ′ � x1

such that `1(e1) = `2(e2) and (x′1, x
′
2, f
′) ∈ Fi+1

The family of relations Fi starts by pairing configurations that are maximal,
i.e., that cannot do a forward transition. It then moves downward in the
structure and relates configurations of cardinality i using the relations defined
on configurations of cardinality i+ 1. Informally, two configurations are in the
relation Fi if after one forward transition the resulting configurations are in the
relation Fi+1.

Note that the condition of having a label preserving bijection on the maximal
configuration already imposes a form of consistent past on the configurations.
For any triple (x1, x2, f) ∈ Fi, f is always a label preserving bijection: if x1 and
x2 are maximal, then it comes from the definition; otherwise it comes from the
fact that f is obtained by restricting a label preserving bijection.

We can describe informally these relations using RCCS processes. Suppose
that [[R1]] = (C1, x1), [[R2]] = (C2, x2) and that (x1, x2, f) ∈ Fi for some f and
i. It implies that there are exactly i events in both traces OR1

−→? R1 and
OR2

−→? R2, and that the two traces have the same labels. Any future action
of R1 can be mimicked by R2, and their continuations are in the relation Fi+1.

35

∅

{e1} {e′1}

{e1, e
′
1}

`1(e1) = a,
`1(e′1) = b

(a) a | b

∅

{e2} {e′′2}

{e2, e
′
2} {e′′2 , e′′′2 }

`2(e2) = `2(e′′′2) = a,
`2(e′2) = `2(e′′2) = b

(b) a.b+ b.a

Figure 5: Encoding parallel and sum in configuration structures

Definition 35 (The backward relations Bi). Given C1, C2 two configuration
structures define, for all x1 ∈ C1, x2 ∈ C2, the following family of relations :

(x1, x2, f) ∈ Bi ⇐⇒

(x1, x2, f) ∈ Fi and ∀x′1,∀e1, x1
e1 x′1,∃x′2,∃e2, x2

e2
x′2 and f ′ = f � x1 such that `1(e1) = `2(e2) and
(x′1, x

′
2, f
′) ∈ Bi−1

The relation Bi is built on top of Fi: it tests that all pairs of configurations
that are in a forward bisimulation are also backward bisimilar. Mirroring Fi,
one builds the families of relations Bi starting from the bottom of the structures.
Hence Bi = F0.

It then moves up in the structure with Bi built using Bi−1. Two configurations
are related by Bi if, after one backward step they both end up in Bi−1. The
relations are also using a mapping between the events, which is a label preserving
bijection, as Bi uses Fi. Moreover the bijection is also order preserving, as the
following proposition shows.

Proposition 7. Let C1, C2 be two configuration structures and Bi the family of
relations defined on them. If for all i, Bi 6= ∅, then for all (x1, x2, f) ∈ Bi, f is
a order preserving bijection.

Proof. We proceed by induction on i. The base case i = 0 is trivial. Let us
consider the inductive case.

Let (x1, x2, f) ∈ Bi. Then for any backward step of x1, x1
e1 x′1 there exists

x′2 such that x2
e2 x′2 and (x′1, x

′
2, f
′) ∈ Bi. Suppose by contradiction that f

is not order preserving. However, by the induction hypothesis f ′ is an order
preserving bijection. Hence the only possible case for f not to be order preserving
if is there exists e′1 ∈ x′1 and e′2 ∈ x′2, f ′(e′1) = e′2 and e′1 <x1 e1 while e′2 6<x2 e2.

Then x2 can backtrack on e′2 and as (x1, x2, f) ∈ Bi, x1 has to backtrack as
well on the event corresponding to e′2, that is on e′1. However, that contradicts
e′1 <x1

e1.

36

Example 8. Consider the configuration structures in Figures 3b and 3c, the
relations Fn are enough to discriminate them:

F2 =
(
{e1, e

′
1}, {e2, e

′
2}
)
;
(
{e1, e

′
1}, {e′′2 , e′′′2 }

)
F1 =

(
{e1}, {e2}

)
;
(
{e1}, {e′′2}

)
F0 = ∅

This intuitively is due to the fact that forward transitions are enough to
discriminate a+a.b and a.b+a.b. However for comparing the processes a | b and
a.b+ b.a whose configurations are in Figures 5a and 5b, we need the backward
moves as well. Let us first build the Fn relations:

F2 =
(
{e1, e

′
1}, {e2, e

′
2}
)
;
(
{e1, e

′
1}; {e′′2 , e′′′2 }

)
F1 =

(
{e1}, {e2}

)
;
(
{e′1}; {e′′2}

)
F0 =

(
∅, ∅
)

We first construct the B0 relation and then move up in the structures. In
our example, the B2 relation breaks the HHPB.

B0 = F0 =
(
∅, ∅
)

B1 =
(
{e1}, {e2}

)
;
(
{e′1}; {e′′2}

)
B2 = ∅

The following proposition states that pairs of configurations are in a bisimu-
lation relation if they have the same cardinality. It follows from the fact that
any configuration is reachable from the empty set and that they have to mimic
each others’ step in the backward direction.

Proposition 8. Let C1, C2 be two configuration structures in a hereditary history
preserving bisimulation R and x1 ∈ C1, x2 ∈ C2 be two configurations.

If ∃f such that (x1, x2, f) ∈ {R} then Card(x1) = Card(x2).

Proof. It follows by induction on the trace ∅ −→? x1. For every event in x1, we
have to add an event in x2 in order to obtain that the pair x1 and x2 are in a
HHPB relation.

We conjecture that, for Card(C1) = Card(C2) = n (Definition 33), ∪nBn is
the hereditary history preserving bisimularity on C1, C2. However, for our main
result (Theorem 2) we only need the following weaker lemma:

Lemma 8. For all C1, C2, if there exists a hereditary history preserving bisimu-
lation R such that C1 R C2, then ∀x1 ∈ C1(∃x2 ∈ C2,∃f, (x1, x2, f) ∈ Bn) ⇐⇒
(∃x2 ∈ C2,∃f, (x1, x2, f) ∈R), where Card(x1) = n.

Proof. One should first remark that C1 R C2 implies that ∀x1 ∈ C1,∃x2 ∈ C2,
and ∃f such that (x1, x2, f) ∈ R, as (∅, ∅, ∅) ∈ R and all configurations are
reachable from the empty set. The reader should notice that the x2 ∈ C2 and f
on both sides of the ⇐⇒ symbol may be different.

We prove that statement by induction on Card(x1).

37

Card(x1) = 0.

⇒ x2 ∈ C2 s.t. (∅, x2, f) ∈ R follows by the definition of the bisimulation from
x2 = ∅ and f = ∅.

⇐ By definition, F0∩B0 = F0. Since there exists x2 ∈ C2 such that (∅, x2, f) ∈
R, we know that any forward transition made by ∅ can be simulated by
a forward transition from x2, and that the elements obtained are in the
relation R. By an iterated use of this notion, we find top configurations
xm1 ∈ C1 and xm2 ∈ C2 such that (xm1 , x

m
2 , f

m) ∈ R. By Proposition 8,
xm1 and xm2 have the same cardinality, k, and (xm1 , x

m
2 , f

m) ∈ Fk. By just
reversing the trace, we go backward and stay in relation Fi until i = 0,
hence we found the x2 and f we were looking for.

Card(x1) = k+ 1. As Card(x1) > 0, we know there exists x′1 such that x1
e1 x′1.

⇒ Let x2 and f such that (x1, x2, f) ∈ Bk+1. We know that

∀x′1,∃x′2 and f ′, x1
e1 x′1, x2

e1 x′2 and (x′1, x
′
2, f
′) ∈ Bk

(By definition of Bk)
∃x′′2 , f ′′, (x′1, x′′2 , f ′′) ∈ R

(By induction hypothesis)

And as x′1
e1−→ x1, there exist x′′′2 and f ′′′ such that (x1, x

′′′
2 , f

′′′) ∈ R.

⇐ We prove it by contraposition: suppose that ∃x2, f such that (x1, x2, f) ∈
R, we prove that ∀x2, (x1, x2, f) /∈ Bk+1 leads to a contradiction.

As (x1, x2, f) ∈ R, we know that there exist x′1, x′2 and f ′ such that
x1

e1 x′1, x2
e2 x′2 and (x′1, x

′
2, f
′) ∈ R. By induction hypothesis, ∃x′′2

and ∃f ′′ such that (x′1, x
′′
2 , f
′′) ∈ Bk, and therefore (x′1, x

′′
2 , f
′′) ∈ Fk. As

x′1
e1−→ x1, ∃x′′′2 and ∃f ′′′ such that x′′2

e′2−→ x′′′2 and (x1, x
′′′
2 , f

′′′) ∈ Fk+1,
by definition of Fk. By assumption, (x1, x

′′′
2 , f

′′′) /∈ Bk+1, but as

– x1
e1 x′1,

– x′′′2
e′2 x′′2 ,

– (x′1, x
′′
2 , f
′′) ∈ Bk,

– (x1, x
′′′
2 , f

′′′) ∈ Fk+1,

– f ′′ = f ′′′ � x1,

– `1(e1) = `2(e1), since f ′′ is label preserving,

we have that (x1, x
′′′
2 , f

′′′) ∈ Bk+1.

From this contradiction we know that we found the right element (x′′′2)
that is in relation with x1 according to Bk+1.

38

[[P1]] = 〈E1, C1, `1〉

x1
•

•

e′′1

[[P1 | Q]] = 〈E′1, C ′1, `′1〉 = ([[P1]]× [[Q]]) � E1

y1
•

y′1•

e′′ = (e′′1 , e
′′
q)

[[P2]] = 〈E2, C2, `2〉

x2
•

x′′2•

e′′2

[[P2 | Q]] = 〈E′2, C ′2, `′2〉 = ([[P2]]× [[Q]]) � E2

y2
•

y′2•

e′2

fcf

π2

π1

π1

e = e1, eq

6 6 π1

6 π2

e′ = e′1, e′q

Figure 6: Configuration structures by the end of the proof of Proposition 9

Remark 6 (A new stratification technique). Bisimulations on various LTS
can be characterized or approximated thanks to families of relation, using a
“stratification technique” [34, Definition 2.5]. Basically, a relation ≈i can be
defined on terms by imposing that A ≈i+1 B iff the continuation of A and B are
in relation ≈i. By taking ≈0 to be the universal relation (i.e., all terms are in
relation with all terms) and ≈= ∩k>0 ≈k, one can approximate or characterize
many common relations on terms.

We also use inductively defined relations to characterize bisimilarity with Fi
and Bi, but would like to highlight four differences:

1. Our relations are defined on (semantic) configuration structures, and not
on (syntactic) terms.

2. Our relations takes into account past and future computations, whereas ≈
takes care only of past computation.

3. For all i ∈ N, ≈i⊇≈i+1, whereas we have a more involved structure: for n
the cardinality of the configuration structure under study, we have that

Fn ⊇ Fn−1 ⊇ · · · ⊇ F1 ⊇ F0 = B0 ⊇ B1 ⊇ · · · ⊇ Bn−1 ⊇ Bn

4. Whereas the starting point ≈0 is the universal relation, Fn is not, it is the
universal relation only on maximal configurations.

39

3.4. Contextual characterization of HHPB
Proposition 9 (Hereditary history preserving bisimulation is a congruence).
For all singly labeled P1, P2, [[P1]] ∼ [[P2]]⇒ ∀C, [[C[P1]]] ∼ [[C[P2]]].

Proof. The proof amounts to carefully build a relation between [[C[P1]]] and
[[C[P2]]] that reflects the known bisimulation between [[P1]] and [[P2]]. Its uses
that causality in a product is the result of the entanglement of the causality of
its elements (Proposition 3).

Due to the restriction on the contexts we consider (motivated by Proposi-
tion 1), we only have to prove that

∀P1, P2, [[P1]] ∼ [[P2]]⇒ ∀Q, [[P1|Q]] ∼ [[P2|Q]]

As [[P1]] ∼ [[P2]], there exists R a hereditary history preserving bisimulation
(HHPB) between [[P1]] and [[P2]]. Figure 6 introduces the variables names and
types.

Define Rc⊆ C ′1 × C ′2 × P(E′1 × E′2) as follows:

(y1, y2, fc) ∈ Rc ⇐⇒

{
(π1(y1), π2(y2), π1 ◦ f) ∈ R
fc(e) = (π1 ◦ f(e)), π2(e)) ∈ y2 for all e ∈ y1

Informally (y1, y2, fc) is in the relation Rc if there is (x1, x2, f) in R such
that xi is the first projection of yi and such that fc satisfies the property: for
(e1, eq) ∈ E′1, fc(e1, eq) = (f(e1), eq) and (f(e1), eq) ∈ E′2.

Let us show that Rc is a HHPB between 〈E′1, C ′1, `′1〉 and 〈E′2, C ′2, `′2〉.

• (∅, ∅, ∅) ∈ Rc.

• For (y1, y2, fc) ∈ R we show that fc is label and order preserving bijection.
We have that fc is defined as fc(e) = (π1 ◦ f(e)), π2(e)), for some f label
and order preserving bijection such that (π1(y1), π2(y2), π1 ◦ f) ∈ R.
That fc is a bijection follows from f being a bijection.
Let e ∈ y1 with π1(e) = e1, π2(e) = eq, then fc(e) = (f(e1), eq) for some
fc s.t. (π(y1), π2(y2), f) ∈ R. We have that `′1(e) = (`1(e1), `Q(eq)) and

`′2(fc(e)) = `′2(f(e1), eq) =
(
`2(f(e1)), `Q(eq)

)
As f is label preserving we get `′2(fc(e)) = (`1(e1), `Q(eq)), hence `′1(e) =
`′2(fc(e)).
Let us now show that for e, e′ ∈ y1, if e→y1 e

′ then fc(e) 6y2 fc(e′). We
denote π1(e) = e1, π2(e) = eq and π1(e′) = e′1, π2(e′) = e′q. Then from
Proposition 3

e→y1 e
′ ⇒ e1 6π1(y1) e

′
1 or eq 6π2(y1) e

′
q

We consider the case where e1 6π1(y1) e
′
1. As f is order preserving we

have that f(e1) 6π1(y2) f(e′1). Then (f(e1), eq) 6x2
(f(e′1), e′q), as the

projections are order reflecting.

40

For i ∈ {1, 2}, we have:

[[Pi]]

xi
•

x′i•

[[C[Pi]]]

yi
•

y′i•

[[C ′[Pi]]]

z′i•

πC,Pi

πC′,C[Pi]πC,Pi

We start with y1 ∼τ y2, then prove that z′1 ∼τ z′2, to end up with
(x′1, x

′
2, f) ∈ Fn ∩ Bn.

Figure 7: Configuration structures by the end of the proof of Theorem 2

• Let (y1, y2, fc) ∈ Rc and y1
e′′−→ y′1, y′1 = y1 ∪ {e′′}. We consider only the

case when π1(e′′) = e′′1 6= ?, π2(e′′) = e′′q 6= ? as the rest is similar. From the
definition of the projections π1(y1), π1(y′1) ∈ C ′1 and as π1(e′′) = e′′1 6= ?,
we have that π1(y′1) = π1(y1) ∪ {e′′1}. We reason similarly on π2(y1) and
get

π1(y1)
e′′1−→ π1(y′1) and π2(y1)

e′′q−→ π2(y′1). (8)

From Equation 8 and as (π1(y1), π2(y2), f) ∈ R, by definition of Rc, we
have that

∃x′2 s.t. π1(y2)
e′′2−→ x′2 = x2 ∪ {e′′2} (9)

and
f ′ = f ∪ {e′′1 ↔ e′′2} (10)

such that (x′1, x
′
2, f
′) ∈ R.

Let us show that ∃y′2 ∈ ([[P2]]× [[PQ]]) with y′2 = y2 ∪{e′2} and π1(e′2) = e′′2 ,
π2(e′2) = e′′q . From Equation 8 and Equation 9 we have that the projections
are defines with π1(y′2) = x′2, π2(y′2) = π2(y′1). The axioms of finiteness
and coincidence freeness on y′2 follows from y2 being a configuration in
([[P2]]× [[PQ]]).

Let us show that y′2 /∈ X2. We have that y′1 /∈ X1. As `(e′′1) and `(e′′q) are
compatible, then so are `(e′′2) and `(e′′q), hence y2 ∪ {(e′′2 , e′′q)} /∈ X2.

Remains to show (y′1, y
′
2, f
′
c) ∈ R, where f ′c = fc ∪ {e′′1 ↔ e′′2}. We have

that (π1(y′1), π1(y′2), f ′) ∈ Rc and from Equation 10 that π1 ◦ f ′c = f ′.

Theorem 2. For all singly labeled P1 and P2, [[P1]] ∼ [[P2]] ⇐⇒ [[P1]] ∼τ [[P2]].

Proof. The left-to-right direction follows from the definition of ∼ (Definition 25)
and from Proposition 9.

41

We prove the other direction by contraposition: let us suppose that [[P1]] ∼τ
[[P2]] and [[P1]] 6∼ [[P2]], we will find a contradiction. Figure 7 presents the general
shape of the configurations at the end of the proof.

As [[P1]] 6∼ [[P2]], by Lemma 8, there exists x1 ∈ [[P1]] such that ∀x2 ∈ [[P2]],
(x1, x2, f) /∈ Bn = Fn ∩ Bn holds. Let us consider the largest such x1. Note that
we consider only x2 such that Card(x1) = Card(x2) = n, and that we use the
projections πC,P (Definition 29) to separate the events of the process P from
the events of the context C.

For any x1 we define C[·] :=
∏
ei∈xi

(`(ei) + cei) | [·] where cei /∈ nm(P1) ∪
nm(P2), such that the following holds

• ∃y1 ∈ [[C[P1]]] such that y1 is closed, πC,P1
(y1) = x1 and y1 6↓cei for all

ei ∈ x1;

• We supposed that [[P1]] ∼τ [[P2]], so [[C[P1]]]
·∼
τ
[[C[P2]]]. Hence ∃ R a back-

and-forth barbed bisimulation and ∃y2 ∈ [[C[P2]]] such that (y1, y2) ∈ R
and y2 6↓cei for all ei ∈ x1.

Note that Bn is defined on top of Fn. We proceed as follows:

• we show that there exists f a label and order preserving bijection between
x1 and πC,P1

(y2);

• then we show that (x1, πC,P1
(y2), f) ∈ Fn for f defined above;

• similarly we show that (x1, πC,P1(y2), f) ∈ Bn.

We denote πC,P1(y2) with x2. We have by induction on the trace ∅ −→? y1

that if y1 is closed then y2 is closed as well. Moreover we define a bijection
g : y1 → y2 that is order and label preserving. It follows again from an induction
on the trace ∅ −→? y1 and from y2 6↓cei for all ei ∈ x1.

We have that ∀e1, e
′
1 ∈ x1, and e2 ∈ x2,

e2 ∈ x2 ⇐⇒ e1 ∈ x1 and `(e1) = `(e2) (11)

e1 <x1 e
′
1 =⇒ π−1

C,P1
(e1) <y1 π

−1
C,P1

(e′1) (12)

=⇒ g(π−1
C,P1

(e1)) <y2 g(π−1
C,P1

(e′1)) (13)

Remark that (11) follows from y2 6↓cei and from the fact that if y1 is closed
we can show by contradiction that y2 is closed as well. Secondly, (12) follows
from the morphisms reflecting causality. Lastly, (13) follows from g being an
order preserving bijection between y1 and y2.

For every events in e′′1 , e′′2 ∈ y2 such that e′′1 →y2 e
′′
2 from Proposition 3, either

πC,P2
(e′′1) 6πC,P2

(y2) πC,P2
(e′′2) or the projection of the two events are causal

dependent in the context. However, the context does not induce any causality
between the events. As πC,P2(e′′1) 6πC,P2

(y2) πC,P2(e′′2), we have that there exists
f a label and order preserving bijection between x1 and πC,P1

(y2).

42

Let us now prove that (x1, x2, f) ∈ Fn+1. There are two cases:

6 ∃x′1, x1
e1−→ x′1,∃x′2, x2

e2−→ x′2 (14)

∃x′1, x1
e1−→ x′1,∀x′2, x2

e2−→ x′2 and (x′1, x
′
2, f
′) /∈ Fn (15)

The implication (14) is easier: if ∃x′2, x2
e2−→ x′2, then, as a context cannot remove

transitions from the original process, ∃y′2, y2
(e2,?)−→ y′2. As [[C[P2]]]

·∼
τ

[[C[P1]]],

∃y′1, y1
(e1,?)−→ y′1, and a similar argument on the context shows that ∃x′1, x1

e1−→ x′1.
Hence a contradiction.

Proving (15) requires more work. First, let C ′[·] := C[·] | (`(e1) + ce1).
By induction hypothesis, there exists z′1 ∈ [[C ′[P1]]] such that z′1 is closed,
πC′,C[P1](z

′
1) = y′1 and z′1 6↓cei and z′1 6↓ce1 for all ei ∈ x1.

By hypothesis, [[P1]] ∼τ [[P2]], hence there exists R′ a back-and-forth barbed
bisimulation between [[C ′[P1]]] and [[C ′[P2]]]. It implies that ∃z′2 such that
z2 ∈ [[C ′[P2]]] and z′2 6↓cei and z′2 6↓ce1 for all ei ∈ x1.

Using a similar argument to above we have that z′2 is closed and that there
exists a bijection h between z′1 and z′2.

Let us denote the projection πC′,P2(z′2) as x′2. We infer using the fact that
z′2 is closed and that z′2 6↓ce1 that ∃e′2 ∈ x′2 such that `(e′2) = `(e1).

As there exists a label and order preserving bijection h′ between z′1 and
z′2, and as we forbid auto concurrency and ambiguous non-deterministic sum
(Definition 26), we conclude that x′2 \ {e′2} = x2, for πC′,P2

(z′2) = x′2.
Then we have πC′,P1(z′1) = x′1, πC′,P2(z′2) = x′2 and f ∪ {e′1 ↔ e′2} a bijection

between the two. As we supposed that x1 is the largest configuration for which
the HHPB breaks we get that ∃x′′2 such that (x′1, x

′′
2 , f
′′) ∈ Fn+1. But such an

x′′2 is unique since P2 is singly labeled. Thus we conclude that (x′1, x
′
2, f ∪ {e′1 ↔

e′2}) ∈ Fn.
The proof that (x1, x2, f) ∈ Bn goes along the line of (and uses) the proof

that (x1, x2, f) ∈ Fn.

Remark 7 (On Theorem 2). Note that Theorem 2 is a result on RCCS processes
that have an empty memory. It is a consequence of HHPB and the back-and-forth
barbed congruence on configuration structure (Definition 30) being defined on
configuration structures, and not on the tuples of configuration structures and
configurations (address). However, we need the reversible setting to simulate
the back-and-forth behaviour that we acquire when moving to configuration
structures. The result above then should be read as: reversible process with an
empty memory are barbed congruent if and only if their encodings in configuration
structures are in a HHPB relation.

To make the result more general and include any reversible process we need
to reformulate it as follows.

Conjecture 1. If R ∼τ S such that [[R]] = (CR, xR) and [[S]] = (CS , xS) then
there exists R a HHPB between CR and CS with (xR, xS , f) ∈ R, for some f .

We leave this as future work.

43

Conclusions and future work

We showed that, for a restricted class of RCCS processes (coherent, without
recursion, auto-concurrency nor auto-conflict (Definition 26)) hereditary history
preserving bisimilarity has a contextual characterization in CCS. We used the
barbed congruence defined on RCCS as the congruence of reference, adapted
it to configuration structures and then showed a correspondence with HHPB.
As a proof tool, we defined two inductively relations that approximate HHPB.
Consequently we have that adding reversibility into the syntax helps in retrieving
some of the discriminating power of configuration structures.

Note that one could prove the main result of the paper by showing that
the bisimulation defined on the LTS of RCCS and the barbed congruence
(Definition 14) equate the same terms. We chose to use configuration structures
instead, as we plan to investigate other equivalences on reversible process algebra
and their encodings as configuration structures give interesting insights.

Weak equivalences. This work follows notable efforts [7, 17] to understand equiv-
alences for reversible processes. There are numerous interesting continuations. A
first one is to move to weak equivalences, which ignores silent moves τ and focus
on the observable part of a process. This is arguably a more interesting relation
than the strong one, in which processes have to mimic exactly each others’ silent
moves. Even if such a relation on configuration structures exists [16, 35] one still
has to show that this is indeed the relation we expect.

In configuration structures, the adjective weak has sometimes [13, 28] a
different meaning: it stands for the ability to change the label and order preserving
bijection as the relation grows, to modify choices that were made before this
step. It would be interesting to understand what “weak” relations in this sense
represent for reversible processes.

Insensitiveness to the direction of the transitions and irreversibility. The relations
defined so far simulate forward (resp. backward) transitions only with forward
(resp. backward) transitions, and only consider forward barb. Ignoring the
direction of the transitions could introduce some fruitful liberality in the way
processes simulate each other. Depending on the answer, a+ τ.b and a+ b would
be weakly bisimilar or not. A weak bisimulation that ignores the direction of
transitions [17] already exists, but it equates a reversible process with all its
derivatives. Irreversible moves could play an important role in such equivalences
and would help to understand what are the meaningful equivalences in the
setting of transactions [20].

Reversibility is commonly used in transactional systems, i.e., participative
computations where a commitment phase is reached whenever a consensus
occurs. This has two effects: it forbids the further exploration of the solution
space, and prevents all the participants to complete if a participant cancels
the transaction [6]. Commitment is modeled as an irreversible action: such a
feature is present in RCCS [5], but absent from our work. It could probably
be implemented by adding a mechanism to “update” the origin of a term, and

44

by “cutting” the configuration structure after an irreversible transition (in the
spirit of the LTS of Definition 22). However, it remains to prove that those two
actions would be equivalent.

Removing the limitations. Context—which plays a key role—raises questions
on the memory handling of RCCS : what about a context that could fix the
memory of an incoherent process?

Maybe of less interest but important for the generality of these results, one
should include infinite processes as well. This needs to modify the relations
Fi and Bi (Definition 34 and Definition 35) used to approximate the HHPB.
In configuration structures, however, one usually handles the recursive case by
unfolding the process up to a finite level.

One way to retrieve the class of processes with auto-conflict and auto-
concurrence could be to define bisimulations that take into account tagged
labels. At the price of a verbose syntax, one could imagine being able to discrim-
inate between configurations reached after firing events with the same labels,
thus allowing to define configuration structures for arbitrary RCCS terms. Are
relations taking into account those “localities” [36], which uniquely determine
occurrences of a label, more discriminating than traditional bisimulations?

Lastly, we conjecture that HHPB is equivalent to a congruence relation on
terms that do not exhibit auto-conflict. More precisely, we could imagine that
congruent processes have isomorphic event structures, and that configuration
structures are isomorphic if and only if they are in HHPB relation.

Acknowledgment

We would like to warmly thank D. Varacca and J. Krivine for the useful
discussions as well as the referees of an earlier version [1] and of this version for
their helpful and insightful remarks.

References

[1] C. Aubert, I. Cristescu, Reversible barbed congruence on configuration
structures, in: S. Knight, A. Lluch Lafuente, I. Lanese, H. T. Vieira (Eds.),
ICE 2015, Vol. 189 of Electronic Proceedings in Theoretical Computer
Science, 2015, pp. 68–95. doi:10.4204/EPTCS.189.7.

[2] I. Cristescu, Operational and denotational semantics for the reversible π-
calculus, Ph.D. thesis, Université Paris Diderot – Paris 7–Sorbonne Paris
Cité (2015).

[3] L. Bougé, On the existence of symmetric algorithms to find leaders in
networks of communicating sequential processes, Acta Informatica 25 (2)
(1988) 179–201. doi:10.1007/BF00263584.

[4] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.

45

http://dx.doi.org/10.4204/EPTCS.189.7
http://dx.doi.org/10.1007/BF00263584

[5] V. Danos, J. Krivine, Reversible communicating systems, in: P. Gardner,
N. Yoshida (Eds.), CONCUR, Vol. 3170 of Lecture Notes in Computer
Science, Springer, 2004, pp. 292–307. doi:10.1007/978-3-540-28644-8_
19.

[6] V. Danos, J.-L. Krivine, F. Tarissan, Self-assembling trees, Electronic Notes
in Theoretical Computer Science 175 (1) (2007) 19–32. doi:10.1016/j.
entcs.2006.11.017.

[7] I. Phillips, I. Ulidowski, Reversibility and models for concurrency, Electronic
Notes in Theoretical Computer Science 192 (1) (2007) 93–108. doi:10.
1016/j.entcs.2007.08.018.

[8] M. Nielsen, G. D. Plotkin, G. Winskel, Petri nets, event structures and
domains, in: G. Kahn (Ed.), Semantics of Concurrent Computation, Pro-
ceedings of the International Symposium, Evian, France, July 2-4, 1979,
Vol. 70 of Lecture Notes in Computer Science, Springer, 1979, pp. 266–284.
doi:10.1007/BFb0022474.

[9] R. J. van Glabbeek, G. D. Plotkin, Configuration structures, event structures
and petri nets, Theoretical Computer Science 410 (41) (2009) 4111–4159.
doi:10.1016/j.tcs.2009.06.014.

[10] G. Winskel, Event structures, in: W. Brauer, W. Reisig, G. Rozenberg
(Eds.), Petri Nets: Central Models and Their Properties, Advances in Petri
Nets 1986, Part II, Proceedings of an Advanced Course, Bad Honnef, 8.-19.
September 1986, Vol. 255 of Lecture Notes in Computer Science, Springer,
1986, pp. 325–392. doi:10.1007/3-540-17906-2_31.

[11] K. Honda, N. Yoshida, On reduction-based process semantics, Theoretical
Computer Science 151 (2) (1995) 437–486. doi:10.1016/0304-3975(95)
00074-7.

[12] R. De Nicola, U. Montanari, F. W. Vaandrager, Back and forth bisimulations,
in: J. C. M. Baeten, J. W. Klop (Eds.), CONCUR ’90, Vol. 458 of Lecture
Notes in Computer Science, Springer, 1990, pp. 152–165. doi:10.1007/
BFb0039058.

[13] I. Phillips, I. Ulidowski, A hierarchy of reverse bisimulations on stable
configuration structures, Mathematical Structures in Computer Science
22 (2) (2012) 333–372. doi:10.1017/S0960129511000429.

[14] M. A. Bednarczyk, Hereditary history preserving bisimulations or what
is the power of the future perfect in program logics, Tech. rep., Instytut
Podstaw Informatyki PAN filia w Gdańsku (1991).
URL http://www.ipipan.gda.pl/~marek/papers/historie.ps.gz

[15] P. Baldan, S. Crafa, A logic for true concurrency, Journal of the ACM 61 (4)
(2014) 24. doi:10.1145/2629638.

46

http://dx.doi.org/10.1007/978-3-540-28644-8_19
http://dx.doi.org/10.1007/978-3-540-28644-8_19
http://dx.doi.org/10.1016/j.entcs.2006.11.017
http://dx.doi.org/10.1016/j.entcs.2006.11.017
http://dx.doi.org/10.1016/j.entcs.2007.08.018
http://dx.doi.org/10.1016/j.entcs.2007.08.018
http://dx.doi.org/10.1007/BFb0022474
http://dx.doi.org/10.1016/j.tcs.2009.06.014
http://dx.doi.org/10.1007/3-540-17906-2_31
http://dx.doi.org/10.1016/0304-3975(95)00074-7
http://dx.doi.org/10.1016/0304-3975(95)00074-7
http://dx.doi.org/10.1007/BFb0039058
http://dx.doi.org/10.1007/BFb0039058
http://dx.doi.org/10.1017/S0960129511000429
http://www.ipipan.gda.pl/~marek/papers/historie.ps.gz
http://www.ipipan.gda.pl/~marek/papers/historie.ps.gz
http://www.ipipan.gda.pl/~marek/papers/historie.ps.gz
http://dx.doi.org/10.1145/2629638

[16] W. Vogler, Bisimulation and action refinement, Theoretical Computer
Science 114 (1) (1993) 173–200. doi:10.1016/0304-3975(93)90157-O.

[17] I. Lanese, C. A. Mezzina, J.-B. Stefani, Reversing higher-order pi,
in: P. Gastin, F. Laroussinie (Eds.), CONCUR, Vol. 6269 of Lecture
Notes in Computer Science, Springer, 2010, pp. 478–493. doi:10.1007/
978-3-642-15375-4_33.

[18] R. Milner, Communication and Concurrency, PHI Series in computer science,
Prentice-Hall, 1989.

[19] G. Winskel, M. Nielsen, Models for concurrency, in: S. Abramsky, D. M.
Gabbay, T. S. E. Maibaum (Eds.), Semantic Modelling, Vol. 4 of Handbook
of Logic in Computer Science, Oxford University Press, 1995, pp. 1–148.

[20] V. Danos, J. Krivine, Transactions in RCCS, in: M. Abadi, L. de Alfaro
(Eds.), CONCUR, Vol. 3653 of Lecture Notes in Computer Science, Springer,
2005, pp. 398–412. doi:10.1007/11539452_31.

[21] J. Krivine, Algèbres de processus réversible - programmation concurrente
déclarative, Ph.D. thesis, Université Paris 6 & INRIA Rocquencourt (2006).
URL https://www.irif.univ-paris-diderot.fr/~jkrivine/
homepage/Research_files/phd.pdf

[22] B. Accattoli, Evaluating functions as processes, in: R. Echahed, D. Plump
(Eds.), TERMGRAPH 2013, Vol. 110 of EPTCS, 2013, pp. 41–55. doi:
10.4204/EPTCS.110.6.

[23] I. Cristescu, J. Krivine, D. Varacca, A compositional semantics for the
reversible p-calculus, in: LICS, IEEE Computer Society, 2013, pp. 388–397.
doi:10.1109/LICS.2013.45.

[24] R. Milner, D. Sangiorgi, Barbed bisimulation, in: W. Kuich (Ed.), ICALP,
Vol. 623 of Lecture Notes in Computer Science, Springer, 1992, pp. 685–695.
doi:10.1007/3-540-55719-9_114.

[25] J.-M. Madiot, Higher-order languages: dualities and bisimulation enhance-
ments, Ph.D. thesis, École Normale Supérieure de Lyon, Università di
Bologna (2015).
URL https://hal.archives-ouvertes.fr/tel-01141067

[26] G. Winskel, Event structure semantics for CCS and related languages, in:
M. Nielsen, E. M. Schmidt (Eds.), ICALP, Vol. 140 of Lecture Notes in
Computer Science, Springer, 1982, pp. 561–576. doi:10.1007/BFb0012800.

[27] G. Boudol, I. Castellani, On the semantics of concurrency: Partial orders
and transition systems, in: H. Ehrig, R. A. Kowalski, G. Levi, U. Montanari
(Eds.), TAPSOFT’87, Vol. 249 of Lecture Notes in Computer Science,
Springer, 1987, pp. 123–137. doi:10.1007/3-540-17660-8_52.

47

http://dx.doi.org/10.1016/0304-3975(93)90157-O
http://dx.doi.org/10.1007/978-3-642-15375-4_33
http://dx.doi.org/10.1007/978-3-642-15375-4_33
http://dx.doi.org/10.1007/11539452_31
https://www.irif.univ-paris-diderot.fr/~jkrivine/homepage/Research_files/phd.pdf
https://www.irif.univ-paris-diderot.fr/~jkrivine/homepage/Research_files/phd.pdf
https://www.irif.univ-paris-diderot.fr/~jkrivine/homepage/Research_files/phd.pdf
https://www.irif.univ-paris-diderot.fr/~jkrivine/homepage/Research_files/phd.pdf
http://dx.doi.org/10.4204/EPTCS.110.6
http://dx.doi.org/10.4204/EPTCS.110.6
http://dx.doi.org/10.1109/LICS.2013.45
http://dx.doi.org/10.1007/3-540-55719-9_114
https://hal.archives-ouvertes.fr/tel-01141067
https://hal.archives-ouvertes.fr/tel-01141067
https://hal.archives-ouvertes.fr/tel-01141067
http://dx.doi.org/10.1007/BFb0012800
http://dx.doi.org/10.1007/3-540-17660-8_52

[28] R. J. van Glabbeek, U. Goltz, Equivalence notions for concurrent sys-
tems and refinement of actions (extended abstract), in: A. Kreczmar,
G. Mirkowska (Eds.), MFCS, Vol. 379 of Lecture Notes in Computer Sci-
ence, Springer, 1989, pp. 237–248. doi:10.1007/3-540-51486-4_71.

[29] A. Joyal, M. Nielsen, G. Winskel, Bisimulation from open maps, Information
and Computation 127 (2) (1996) 164–185. doi:10.1006/inco.1996.0057.

[30] I. Phillips, I. Ulidowski, Reversing algebraic process calculi, The Journal of
Logic and Algebraic Programming 73 (1-2) (2007) 70–96. doi:10.1016/j.
jlap.2006.11.002.

[31] R. J. van Glabbeek, History preserving process graphs, Tech. rep., Stanford
University (1996).
URL http://kilby.stanford.edu/~rvg/pub/history.draft.dvi

[32] R. J. van Glabbeek, U. Goltz, Refinement of actions and equivalence notions
for concurrent systems, Acta Informatica 37 (4/5) (2001) 229–327. doi:
10.1007/s002360000041.

[33] G. Boudol, I. Castellani, A non-interleaving semantics for CCS based on
proved transitions, Research Report RR-0919, INRIA (1988).
URL https://hal.inria.fr/inria-00075636

[34] D. Sangiorgi, On the origins of bisimulation and coinduction, ACM Trans-
actions on Programming Languages and Systems 31 (4). doi:10.1145/
1516507.1516510.

[35] M. P. Fiore, G. L. Cattani, G. Winskel, Weak bisimulation and open maps,
in: LICS, IEEE Computer Society, 1999, pp. 67–76. doi:10.1109/LICS.
1999.782590.

[36] G. Boudol, I. Castellani, A non-interleaving semantics for CCS based
on proved transitions, Fundamenta Informaticae 11 (1988) 433–452, see
also [33].

48

http://dx.doi.org/10.1007/3-540-51486-4_71
http://dx.doi.org/10.1006/inco.1996.0057
http://dx.doi.org/10.1016/j.jlap.2006.11.002
http://dx.doi.org/10.1016/j.jlap.2006.11.002
http://kilby.stanford.edu/~rvg/pub/history.draft.dvi
http://kilby.stanford.edu/~rvg/pub/history.draft.dvi
http://dx.doi.org/10.1007/s002360000041
http://dx.doi.org/10.1007/s002360000041
https://hal.inria.fr/inria-00075636
https://hal.inria.fr/inria-00075636
https://hal.inria.fr/inria-00075636
http://dx.doi.org/10.1145/1516507.1516510
http://dx.doi.org/10.1145/1516507.1516510
http://dx.doi.org/10.1109/LICS.1999.782590
http://dx.doi.org/10.1109/LICS.1999.782590

	Introduction
	1 Contextual equivalences in reversibility
	1.1 (Reversible) labeled transition systems
	1.2 Reversible CCS
	1.3 Contextual equivalences

	2 Configuration structures as a model of reversibility
	2.1 Configuration structures as a causal model
	2.2 Operational semantics, correspondence and equivalences
	2.3 Configuration structures for RCCS

	3 Contextual equivalence on configuration structures
	3.1 Contexts for configuration structures
	3.2 Relation induced by barbed congruence on configuration structures
	3.3 Inductive characterization of HHPB
	3.4 Contextual characterization of HHPB

	Conclusions and future work

