A Brief Overview of Process Calculi
SCCS Research Colloquium

Clément Aubert

Augusta University, School of Computer & Cyber Sciences, GA, USA

=

Feb. 16, 2024, Augusta, GA, USA

In a nutshell
— Explain what my field (formal methods) is,

My goals today

In a nutshell
— Explain what my field (formal methods) is,
— lllustrate (some of) the impacts of process calculi

Why are formal methods ignored?

Martin Escardo
by OMartinEscardo@mathstodo

Most programmers in industry just put together building blocks from
libraries in simple ways.

This is because their employers are deliberately *not* interested in
the correctness, or infallibility, of their programs. If they work often,
fine - when they break, just fix them, again if necessary, in a
perpetual cycle.

The same would be true if there were no laws for building bridges:
civil engineering and differential equations wouldn't be need. Just
build a bridge, if it breaks down and falls apart, then next time try
something else, experimentally.

Nobody cares about rigorous programming. Only rigorous
programming requires mathematics.

https://mathstodon.xyz/@MartinEscardo/111936926330740626

https://mathstodon.xyz/@MartinEscardo/111936926330740626

What can formal methods bring? — The example of Compcert

COMPCERT

ACM b [ACM
{, ¥ SIGPLAN
Software ;7 Programming
System Languages
W Award W/ 1) Software

Award
2021 2022

The CompCert project investigates the formal verification of realistic compilers usable for
critical embedded software. Such verified compilers come with a mathematical, machine-
checked proof that the generated executable code behaves exactly as prescribed by the
semantics of the source program. By ruling out the possibility of compiler-introduced bugs,

verified compilers strengthen the guarantees that can be obtained by applying formal
methods to source programs.

https://compcert.org/

https://compcert.org/

What can formal methods bring? — The example of Compcert

The striking thing about our CompCert results is that the middle-
end bugs we found in all other compilers are absent. As of early 2011,
the under-development version of CompCert is the only compiler we
have tested for which Csmith cannot find wrong-code errors. This is
not for lack of trying: we have devoted about six CPU-years to the
task. The apparent unbreakability of CompCert supports a strong
argument that developing compiler optimizations within a proof
framework, where safety checks are explicit and machine-checked,
has tangible benefits for compiler users.

X. Yang, Y. Chen, E. Eide, and J. Regehr. 2011. Finding and understanding bugs in
C compilers. PLDI’11, 10.1145/1993498.1993532

https://doi.org/10.1145/1993498.1993532

Formal Methods. ..
— ... is avast field,

What are formal methods?

Formal Methods. ..
— ... is avast field,

— ... uses different mathematical techniques (type theory, modern algebra, proof
techniques, ...),

What are formal methods?

Formal Methods. ..
— ... is avast field,

— ... uses different mathematical techniques (type theory, modern algebra, proof
techniques, ...),

— ... takes time (Compcert uses the “calculus of constructions”, created in 1984)

v

What are formal methods?

Formal Methods. ..
— ... is avast field,

— ... uses different mathematical techniques (type theory, modern algebra, proof
techniques, ...),

— ... takes time (Compcert uses the “calculus of constructions”, created in 1984)

v

Our focus today

will be on the calculus of communicating systems (CCS), introduced by Robin
Milner around 1980.

CCS
P.Q=0 (Inactive) a.P (Prefix) P\a (Restriction)

Calculus of Communicating Systems — Presentation

CCS
P,Q=0 (Inactive) a.P (Prefix) P\a (Restriction)

Action and Restriction
act. ¢ {a,a} PP res
[e] « s B
a.P4 P P\a— P\a

Calculus of Communicating Systems — Presentation

CCS
P,Q=0 (Inactive) a.P (Prefix) P\a (Restriction)
PlQ (Parallel)

Action and Restriction
a « , - .
a.P4 P P\a— P\a

Parallel Group
P P PALP QM a Q=

FlaspPia" Plampria ™ Fla=pa "

Calculus of Communicating Systems — Presentation

CCS
P,Q=0 (Inactive) a.P (Prefix) P\a (Restriction)
PlQ (Parallel) P+Q (Sum)

Action and Restriction

act. ¢ {a,a} PP res
a a , B — .
aP==P P\a- P\a
Parallel Group
P P PALP QM a Q= |
PlQPlQ " PlamP|Q@ 0 PlamPl
Sum Group
P P! Q% Q

— _+ — ¢
Q+P P QP @ "

Calculus of Communicating Systems — Presentation

CCS
P,Q=0 (Inactive) a.P (Prefix) P\a (Restriction)
PlQ (Parallel) P+ Q (Sum) IP (Replication)
Action and Restriction
act. ¢ {a,a} PP res
a o ,af ——m .
aP= P P\a-= P\a
Parallel Group
P, P PP Q% Q= Q |
PlaPl@" “plampl@ O PlamPl@ "
Sum Group
P P Q% Q

— _+ — ¢
Q+P P QP @ "

Calculus of Communicating Systems — Applications

CCS —{xw-Calculi

— m-Calculi adds name-passing abilities (messages can contain channel name),

Calculus of Communicating Systems — Applications

CCS — n-Calculi —/ Applied 7-Calculi

— m-Calculi adds name-passing abilities (messages can contain channel name),
— Applied 7-Calculi adds aliases (messages can contain encrypted information),

Calculus of Communicating Systems — Applications
CCS — w-Calculi — Applied 7-Calculi —{ProVerif

— m-Calculi adds name-passing abilities (messages can contain channel name),

— Applied 7-Calculi adds aliases (messages can contain encrypted information),
— ProVerif is an implementation:

Protocol:
Pi calculus + cryptography

Properties to prove:
Secrecy, authentication, ...

Automatic translator

)
Horn clauses Derivability queries |

'
[Resolution with selection]

Derivation:
Attack at the Horn clause level

Attack reconstruction

Attack at the lpi
calculus level
The property is false

No derivation:
The property is true

False attack
"I don’t know"

Calculus of Communicating Systems — Applications

CCS — w-Calculi — Applied w-Calculi — ProVerif — Q @ .

— m-Calculi adds name-passing abilities (messages can contain channel name),
— Applied 7-Calculi adds aliases (messages can contain encrypted information),
— ProVerif is an implementation:

Protocol:
Pi calculus + cryptography

Properties to prove:
Secrecy, authenticati .

Automatic translator

) Signal

)
Horn clauses Derivability queries |

| In [11] PQXDH has been formally analyzed in the symbolic model
[Resolution with selection] with ProVerif [12] and in the computational model with CryptoVerif
[13]. With ProVerif, the authors prove both authentication and
Derivation: . . .
Attack at the Horn clause level ‘ secrecy in the symbolic model and enumerate the precise
[—\—] conditions under which the attacker can break these properties.
Attack reconstruction
These security properties notably imply forward secrecy, resistance
e ok to harvest now decrypt later attacks, resistance to key compromise
"I dont know" impersonation, and session independence.

No derivation:
The property is true

Attack at the pi
calculus ICVCII
The property is false

Conclusion: my work & thanks!

CCS is also connected to . ..

Petri nets, biological systems, session types, choregraphies, category theory, ...

caubert@augusta.edu

Conclusion: my work & thanks!

CCS is also connected to . ..

Petri nets, biological systems, session types, choregraphies, category theory, ...

My contributions revolve around
— “Better” applied 7-calculus,

caubert@augusta.edu

Conclusion: my work & thanks!

CCS is also connected to . ..

Petri nets, biological systems, session types, choregraphies, category theory, ...

My contributions revolve around
— “Better” applied 7-calculus,
— Reversible CCS,

caubert@augusta.edu

Conclusion: my work & thanks!

CCSis also connected to ...
Petri nets, biological systems, session types, choregraphies, category theory, ...

My contributions revolve around
— “Better” applied 7-calculus,
— Reversible CCS,

— (and others in the field of formal method, but not related to process calculi — ask

Neea Rusch about those!))

Thanks!
Feel free to reach out to

caubert@augusta.edu

caubert@augusta.edu

