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Reversing Your Computation, but Why?– Introduction
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Reversing Your Computation, but Why?– What is “reversible”?

Hardware

Software

Versus

Observation

s
Reversible hardware can only execute reversible software.
Reversible programs can be compiled into two (forward-only) programs.

Reversible computing from a programming language perspective, R. Glück, T. Yokoyama
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Reversing Your Computation, but Why?– What “is” reversible?

Question

s

Can any program be reversed?

No!
Can any program have an “equivalent” reversible program? Yes!

(twice!)

Should any program be reversible? No!
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π−1
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Reversing Your Computation, but Why?– But . . . Why?

Question
But . . . why would we want to reverse our computation(s)?

archive folder & filesZip
unzip

archivefolder & files Zip
zip

GPGKey & file Encrypted file
Encrypt

Mottos
1 Futur(e|istic) hardware will need it.

2 Constraint software = better control = more guarantees.

3 Interesting links to concurrency.
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Reversing Your Computation, but Why?– Hardware perspective(s)

Computing paradigms connected to reversibility (and their fields)
1 Low-power electronics (Thermodynamic)

2 Quantum computing (Linear algebra)

3 Chemical computing (Theoretical chemistry)

And remember that we can adopt only a part of a paradigm.
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Reversing Your Computation, but Why?– Low-power electronics

Landauer’s principle
Logically irreversible transformation dissipates heat.

Landauer’s principle – extrapolated
Logically reversible transformation uses no energy.

Hope
Reversible computers could use less energy.
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Reversing Your Computation, but Why?– Quantum computing

Unitary matrices [Wikipedia]

An invertible complex square matrix U is unitary if its matrix inverse U−1 equals its
conjugate transpose U∗, that is, if

U∗U = UU∗ = id

Conclusion
Quantum circuitsa have to be reversible.

aWithout e.g., measurement.

8

https://en.wikipedia.org/wiki/Unitary_matrix
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Reversing Your Computation, but Why?– Chemical computing

Chemical computer [Wikipidea]
A chemical computer is an unconventional computer where data are represented by
varying concentrations of chemicals.

How Chemistry Computes: Language Recognition by Non-Biochemical
Chemical Automata. From Finite Automata to Turing Machines, M.
Dueñas-Díez, J. Pérez-Mercader

Reversible reaction [Wikipedia]
aA + bB −−⇀↽−− cC + dD

Hope
Reversible chemical computers?
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Reversing Your Computation, but Why?– Software perspective(s)

Software benefits provided by reversibility
1 Development

2 Verification

3 Security

And remember that we can execute reversible programs on irreversible hardware.
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Reversing Your Computation, but Why?– Software development

Motto
Constraining the programmer can be a good thing.

Reversible computing and implicit computational complexity, L. Kristiansen

Reminder
Reversible programs can be compiled into two (forward-only) programs.
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Reversing Your Computation, but Why?– Software verification

Verify a zip program
1 Write the zip routine.

2 Write the unzip routine.
3 Verify

1 zip ◦ unzip = id,
2 unzip ◦ zip = id.

Verify a reversible zip program
1 Write the zip routine.
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Reversing Your Computation, but Why?– Security

Data integrity [Wikipedia]
Ensuring that the data remains the same as when it was originally recorded.

Improving Data Integrity with Reversible Logic-based Error Detection and
Correction Module on AHB-APB Bridge, S. Anant Edidi; R. Marada; T.
Ali Khan & Chitra E

Computer forensics
Reversible watermarking is required to produce forensic evidence.

13

https://en.wikipedia.org/wiki/Data_integrity


Reversing Your Computation, but Why?– Security

Data integrity [Wikipedia]
Ensuring that the data remains the same as when it was originally recorded.

Improving Data Integrity with Reversible Logic-based Error Detection and
Correction Module on AHB-APB Bridge, S. Anant Edidi; R. Marada; T.
Ali Khan & Chitra E

Computer forensics
Reversible watermarking is required to produce forensic evidence.

13

https://en.wikipedia.org/wiki/Data_integrity


Reversing Your Computation, but Why?– Security

Data integrity [Wikipedia]
Ensuring that the data remains the same as when it was originally recorded.

Improving Data Integrity with Reversible Logic-based Error Detection and
Correction Module on AHB-APB Bridge, S. Anant Edidi; R. Marada; T.
Ali Khan & Chitra E

Computer forensics
Reversible watermarking is required to produce forensic evidence.

13

https://en.wikipedia.org/wiki/Data_integrity


Reversing Your Computation, but Why?– Security

Data integrity [Wikipedia]
Ensuring that the data remains the same as when it was originally recorded.

Improving Data Integrity with Reversible Logic-based Error Detection and
Correction Module on AHB-APB Bridge, S. Anant Edidi; R. Marada; T.
Ali Khan & Chitra E

Computer forensics
Reversible watermarking is required to produce forensic evidence.

13

https://en.wikipedia.org/wiki/Data_integrity


Reversing Your Computation, but Why?– Concurrency perspective(s)

Concurrency and reversibility
Consider two symmetric labeled transition systems−−→· , ::→· enforcing:

R −−→a S ⇐⇒ S ::→a R (Loop Lemma)

1 Defining history

2 Defining independence

3 Defining dependence

14



Reversing Your Computation, but Why?– Defining history

Problem
How to organize reversible concurrency?

�

?

Solution
Each thread carries its own (causal) history.
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Reversing Your Computation, but Why?– Defining independence

Defining independence (concurrency)

P

P1a

P2
b

⇒ P

P1a

P2
b

Q

b

a
P

P1a

P2

b

⇒ P

P2a

P2

b

Qb a

Drawn as:

Observation (forward-only)
Co-initial and composable definitions do not have to be related.
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Reversing Your Computation, but Why?– Defining independence

Observation (reversible)
Co-initial and composable, forward and backward definitions can easily be related.

R −−→a S ⇐⇒ S ::→a R (Loop Lemma)

=⇒ (Reversing preserves independence)1

1 An Axiomatic Approach to Reversible Computation, I. Lanese, I. Phillips, I. Ulidowski

Inter-defining

⇐⇒ ⇐⇒

⇐⇒ ⇐⇒
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Reversing Your Computation, but Why?– Defining dependence

Notation
Given two transitions t , u, we write

— t ι u if t and u are independent,

— t ] u if t and u are dependent.

Definition (forward-only)
t ι u iff neither t ] u nor t ] u hold.

Theorem (reversible)
t ι u iff not t ] u.

Work in progress, C. Aubert, I. Phillips, I. Ulidowski
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Reversing Your Computation, but Why?– Thanks!

Thanks!
Feel free to reach out to

caubert@augusta.edu
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Reversing Your Computation, but Why?– Connexions!

Sjouke Mauw
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Reversing Your Computation, but Why?– Connexions!

Krzysztof Ziemianski & Uli Fahrenberg
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Ross Horne & Christian Johansen

& Rob van Glabbeek!
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