
Reversing Your Computation, but Why?
Meeting on Foundations of Security and Concurrency

Clément Aubert

Augusta University, School of Computer & Cyber Sciences, GA, USA

July 4th, 2024



Reversing Your Computation, but Why?– Introduction

Input Output

Forward

Execution

Backward Execution

16 4Calc

√
·

·2

archive folder & filesZip
unzip

zip

vlcflac wav
convert

convert

First observation
We reverse computations (“uncompute”) frequently actually!

2



Reversing Your Computation, but Why?– Introduction

Input Output

Forward

Execution

Backward Execution

16 4Calc

√
·

·2

archive folder & filesZip
unzip

zip

vlcflac wav
convert

convert

First observation
We reverse computations (“uncompute”) frequently actually!

2



Reversing Your Computation, but Why?– Introduction

Input Output

Forward

Execution

Backward Execution

16 4

Calc

√
·

·2

archive folder & filesZip
unzip

zip

vlcflac wav
convert

convert

First observation
We reverse computations (“uncompute”) frequently actually!

2



Reversing Your Computation, but Why?– Introduction

Input Output

Forward

Execution

Backward Execution

16 4Calc

√
·

·2

archive folder & filesZip
unzip

zip

vlcflac wav
convert

convert

First observation
We reverse computations (“uncompute”) frequently actually!

2



Reversing Your Computation, but Why?– Introduction

Input Output

Forward

Execution

Backward Execution

16 4Calc

√
·

·2

archive folder & filesZip
unzip

zip

vlcflac wav
convert

convert

First observation
We reverse computations (“uncompute”) frequently actually!

2



Reversing Your Computation, but Why?– Introduction

Input Output

Forward

Execution

Backward Execution

16 4Calc

√
·

·2

archive folder & filesZip
unzip

zip

vlcflac wav
convert

convert

First observation
We reverse computations (“uncompute”) frequently actually!

2



Reversing Your Computation, but Why?– Introduction

Input Output
Forward Execution

Backward Execution

16 4Calc

√
·

·2

archive folder & filesZip
unzip

zip

vlcflac wav
convert

convert

First observation
We reverse computations (“uncompute”) frequently actually!

2



Reversing Your Computation, but Why?– Introduction

Input Output
Forward Execution

Backward Execution

16 4Calc

√
·

·2

archive folder & filesZip
unzip

zip

vlcflac wav
convert

convert

First observation
We reverse computations (“uncompute”) frequently actually!

2



Reversing Your Computation, but Why?– Introduction

Input Output
Forward Execution

Backward Execution

16 4Calc

√
·

·2

archive folder & filesZip
unzip

zip

vlcflac wav
convert

convert

First observation
We reverse computations (“uncompute”) frequently actually!

2



Reversing Your Computation, but Why?– What is “reversible”?

Hardware

Software

Versus

Observation

s
Reversible hardware can only execute reversible software.
Reversible programs can be compiled into two (forward-only) programs.

Reversible computing from a programming language perspective, R. Glück, T. Yokoyama

3



Reversing Your Computation, but Why?– What is “reversible”?

Hardware

Software

Versus

Observation

s
Reversible hardware can only execute reversible software.
Reversible programs can be compiled into two (forward-only) programs.

Reversible computing from a programming language perspective, R. Glück, T. Yokoyama

3



Reversing Your Computation, but Why?– What is “reversible”?

Hardware

Software

Versus

Observation

s

Reversible hardware can only execute reversible software.

Reversible programs can be compiled into two (forward-only) programs.

Reversible computing from a programming language perspective, R. Glück, T. Yokoyama

3



Reversing Your Computation, but Why?– What is “reversible”?

Hardware

Software

Versus

Observations
Reversible hardware can only execute reversible software.
Reversible programs can be compiled into two (forward-only) programs.

Reversible computing from a programming language perspective, R. Glück, T. Yokoyama

3



Reversing Your Computation, but Why?– What is “reversible”?

Hardware

Software

Versus

Observations
Reversible hardware can only execute reversible software.
Reversible programs can be compiled into two (forward-only) programs.

Reversible computing from a programming language perspective, R. Glück, T. Yokoyama
3



Reversing Your Computation, but Why?– What “is” reversible?

Question

s

Can any program be reversed?

No!
Can any program have an “equivalent” reversible program? Yes!

(twice!)

Should any program be reversible? No!

(A,B) ACalc
π1

+ trace

Landauer embed.

π−1
1

+(A,B)

Bennett trick

GPGKey & file Encrypted file
Encrypt

Reversible computing from a programming language perspective, R. Glück, T. Yokoyama

4



Reversing Your Computation, but Why?– What “is” reversible?

Question

s

Can any program be reversed? No!

Can any program have an “equivalent” reversible program? Yes!

(twice!)

Should any program be reversible? No!

(A,B) ACalc
π1

+ trace

Landauer embed.

π−1
1

+(A,B)

Bennett trick

GPGKey & file Encrypted file
Encrypt

Reversible computing from a programming language perspective, R. Glück, T. Yokoyama

4



Reversing Your Computation, but Why?– What “is” reversible?

Questions
Can any program be reversed? No!
Can any program have an “equivalent” reversible program?

Yes!

(twice!)

Should any program be reversible? No!

(A,B) ACalc
π1

+ trace

Landauer embed.

π−1
1

+(A,B)

Bennett trick

GPGKey & file Encrypted file
Encrypt

Reversible computing from a programming language perspective, R. Glück, T. Yokoyama

4



Reversing Your Computation, but Why?– What “is” reversible?

Questions
Can any program be reversed? No!
Can any program have an “equivalent” reversible program? Yes!

(twice!)
Should any program be reversible? No!

(A,B) ACalc
π1

+ trace

Landauer embed.

π−1
1

+(A,B)

Bennett trick

GPGKey & file Encrypted file
Encrypt

Reversible computing from a programming language perspective, R. Glück, T. Yokoyama

4



Reversing Your Computation, but Why?– What “is” reversible?

Questions
Can any program be reversed? No!
Can any program have an “equivalent” reversible program? Yes! (twice!)

Should any program be reversible? No!

(A,B) ACalc
π1

+ trace

Landauer embed.

π−1
1

+(A,B)

Bennett trick

GPGKey & file Encrypted file
Encrypt

Reversible computing from a programming language perspective, R. Glück, T. Yokoyama

4



Reversing Your Computation, but Why?– What “is” reversible?

Questions
Can any program be reversed? No!
Can any program have an “equivalent” reversible program? Yes! (twice!)

Should any program be reversible? No!

(A,B) ACalc
π1

+ trace

Landauer embed.

π−1
1

+(A,B)

Bennett trick

GPGKey & file Encrypted file
Encrypt

Reversible computing from a programming language perspective, R. Glück, T. Yokoyama

4



Reversing Your Computation, but Why?– What “is” reversible?

Questions
Can any program be reversed? No!
Can any program have an “equivalent” reversible program? Yes! (twice!)
Should any program be reversible?

No!

(A,B) ACalc
π1

+ trace

Landauer embed.

π−1
1

+(A,B)

Bennett trick

GPGKey & file Encrypted file
Encrypt

Reversible computing from a programming language perspective, R. Glück, T. Yokoyama

4



Reversing Your Computation, but Why?– What “is” reversible?

Questions
Can any program be reversed? No!
Can any program have an “equivalent” reversible program? Yes! (twice!)
Should any program be reversible? No!

(A,B) ACalc
π1

+ trace

Landauer embed.

π−1
1

+(A,B)

Bennett trick

GPGKey & file Encrypted file
Encrypt

Reversible computing from a programming language perspective, R. Glück, T. Yokoyama

4



Reversing Your Computation, but Why?– But . . . Why?

Question
But . . . why would we want to reverse our computation(s)?

archive folder & filesZip
unzip

archivefolder & files Zip
zip

GPGKey & file Encrypted file
Encrypt

Mottos
1 Futur(e|istic) hardware will need it.

2 Constraint software = better control = more guarantees.

3 Interesting links to concurrency.

5



Reversing Your Computation, but Why?– But . . . Why?

Question
But . . . why would we want to reverse our computation(s)?

archive folder & filesZip
unzip

archivefolder & files Zip
zip

GPGKey & file Encrypted file
Encrypt

Mottos
1 Futur(e|istic) hardware will need it.

2 Constraint software = better control = more guarantees.

3 Interesting links to concurrency.
5



Reversing Your Computation, but Why?– Hardware perspective(s)

Computing paradigms connected to reversibility (and their fields)
1 Low-power electronics (Thermodynamic)

2 Quantum computing (Linear algebra)

3 Chemical computing (Theoretical chemistry)

And remember that we can adopt only a part of a paradigm.

6



Reversing Your Computation, but Why?– Low-power electronics

Landauer’s principle
Logically irreversible transformation dissipates heat.

Landauer’s principle – extrapolated
Logically reversible transformation uses no energy.

Hope
Reversible computers could use less energy.

7



Reversing Your Computation, but Why?– Low-power electronics

Landauer’s principle
Logically irreversible transformation dissipates heat.

Landauer’s principle – extrapolated
Logically reversible transformation uses no energy.

Hope
Reversible computers could use less energy.

7



Reversing Your Computation, but Why?– Low-power electronics

Landauer’s principle
Logically irreversible transformation dissipates heat.

Landauer’s principle – extrapolated
Logically reversible transformation uses no energy.

Hope
Reversible computers could use less energy.

7



Reversing Your Computation, but Why?– Low-power electronics

Landauer’s principle
Logically irreversible transformation dissipates heat.

Landauer’s principle – extrapolated
Logically reversible transformation uses no energy.

Hope
Reversible computers could use less energy.

7



Reversing Your Computation, but Why?– Quantum computing

Unitary matrices [Wikipedia]

An invertible complex square matrix U is unitary if its matrix inverse U−1 equals its
conjugate transpose U∗, that is, if

U∗U = UU∗ = id

Conclusion
Quantum circuitsa have to be reversible.

aWithout e.g., measurement.

8

https://en.wikipedia.org/wiki/Unitary_matrix


Reversing Your Computation, but Why?– Quantum computing

Unitary matrices [Wikipedia]

An invertible complex square matrix U is unitary if its matrix inverse U−1 equals its
conjugate transpose U∗, that is, if

U∗U = UU∗ = id

Conclusion
Quantum circuitsa have to be reversible.

aWithout e.g., measurement.

8

https://en.wikipedia.org/wiki/Unitary_matrix


Reversing Your Computation, but Why?– Quantum computing

Unitary matrices [Wikipedia]

An invertible complex square matrix U is unitary if its matrix inverse U−1 equals its
conjugate transpose U∗, that is, if

U∗U = UU∗ = id

Conclusion
Quantum circuitsa have to be reversible.

aWithout e.g., measurement.

8

https://en.wikipedia.org/wiki/Unitary_matrix


Reversing Your Computation, but Why?– Chemical computing

Chemical computer [Wikipidea]
A chemical computer is an unconventional computer where data are represented by
varying concentrations of chemicals.

How Chemistry Computes: Language Recognition by Non-Biochemical
Chemical Automata. From Finite Automata to Turing Machines, M.
Dueñas-Díez, J. Pérez-Mercader

Reversible reaction [Wikipedia]
aA + bB −−⇀↽−− cC + dD

Hope
Reversible chemical computers?

9

https://en.wikipedia.org/wiki/Chemical_computer
https://en.wikipedia.org/wiki/Reversible_reaction


Reversing Your Computation, but Why?– Chemical computing

Chemical computer [Wikipidea]
A chemical computer is an unconventional computer where data are represented by
varying concentrations of chemicals.

How Chemistry Computes: Language Recognition by Non-Biochemical
Chemical Automata. From Finite Automata to Turing Machines, M.
Dueñas-Díez, J. Pérez-Mercader

Reversible reaction [Wikipedia]
aA + bB −−⇀↽−− cC + dD

Hope
Reversible chemical computers?

9

https://en.wikipedia.org/wiki/Chemical_computer
https://en.wikipedia.org/wiki/Reversible_reaction


Reversing Your Computation, but Why?– Chemical computing

Chemical computer [Wikipidea]
A chemical computer is an unconventional computer where data are represented by
varying concentrations of chemicals.

How Chemistry Computes: Language Recognition by Non-Biochemical
Chemical Automata. From Finite Automata to Turing Machines, M.
Dueñas-Díez, J. Pérez-Mercader

Reversible reaction [Wikipedia]
aA + bB −−⇀↽−− cC + dD

Hope
Reversible chemical computers?

9

https://en.wikipedia.org/wiki/Chemical_computer
https://en.wikipedia.org/wiki/Reversible_reaction


Reversing Your Computation, but Why?– Chemical computing

Chemical computer [Wikipidea]
A chemical computer is an unconventional computer where data are represented by
varying concentrations of chemicals.

How Chemistry Computes: Language Recognition by Non-Biochemical
Chemical Automata. From Finite Automata to Turing Machines, M.
Dueñas-Díez, J. Pérez-Mercader

Reversible reaction [Wikipedia]
aA + bB −−⇀↽−− cC + dD

Hope
Reversible chemical computers?

9

https://en.wikipedia.org/wiki/Chemical_computer
https://en.wikipedia.org/wiki/Reversible_reaction


Reversing Your Computation, but Why?– Software perspective(s)

Software benefits provided by reversibility
1 Development

2 Verification

3 Security

And remember that we can execute reversible programs on irreversible hardware.

10



Reversing Your Computation, but Why?– Software development

Motto
Constraining the programmer can be a good thing.

Reversible computing and implicit computational complexity, L. Kristiansen

Reminder
Reversible programs can be compiled into two (forward-only) programs.

11



Reversing Your Computation, but Why?– Software development

Motto
Constraining the programmer can be a good thing.

Reversible computing and implicit computational complexity, L. Kristiansen

Reminder
Reversible programs can be compiled into two (forward-only) programs.

11



Reversing Your Computation, but Why?– Software development

Motto
Constraining the programmer can be a good thing.

Reversible computing and implicit computational complexity, L. Kristiansen

Reminder
Reversible programs can be compiled into two (forward-only) programs.

11



Reversing Your Computation, but Why?– Software development

Motto
Constraining the programmer can be a good thing.

Reversible computing and implicit computational complexity, L. Kristiansen

Reminder
Reversible programs can be compiled into two (forward-only) programs.

11



Reversing Your Computation, but Why?– Software verification

Verify a zip program
1 Write the zip routine.

2 Write the unzip routine.
3 Verify

1 zip ◦ unzip = id,
2 unzip ◦ zip = id.

Verify a reversible zip program
1 Write the zip routine.

12



Reversing Your Computation, but Why?– Software verification

Verify a zip program
1 Write the zip routine.

2 Write the unzip routine.
3 Verify

1 zip ◦ unzip = id,
2 unzip ◦ zip = id.

Verify a reversible zip program
1 Write the zip routine.

12



Reversing Your Computation, but Why?– Security

Data integrity [Wikipedia]
Ensuring that the data remains the same as when it was originally recorded.

Improving Data Integrity with Reversible Logic-based Error Detection and
Correction Module on AHB-APB Bridge, S. Anant Edidi; R. Marada; T.
Ali Khan & Chitra E

Computer forensics
Reversible watermarking is required to produce forensic evidence.

13

https://en.wikipedia.org/wiki/Data_integrity


Reversing Your Computation, but Why?– Security

Data integrity [Wikipedia]
Ensuring that the data remains the same as when it was originally recorded.

Improving Data Integrity with Reversible Logic-based Error Detection and
Correction Module on AHB-APB Bridge, S. Anant Edidi; R. Marada; T.
Ali Khan & Chitra E

Computer forensics
Reversible watermarking is required to produce forensic evidence.

13

https://en.wikipedia.org/wiki/Data_integrity


Reversing Your Computation, but Why?– Security

Data integrity [Wikipedia]
Ensuring that the data remains the same as when it was originally recorded.

Improving Data Integrity with Reversible Logic-based Error Detection and
Correction Module on AHB-APB Bridge, S. Anant Edidi; R. Marada; T.
Ali Khan & Chitra E

Computer forensics
Reversible watermarking is required to produce forensic evidence.

13

https://en.wikipedia.org/wiki/Data_integrity


Reversing Your Computation, but Why?– Security

Data integrity [Wikipedia]
Ensuring that the data remains the same as when it was originally recorded.

Improving Data Integrity with Reversible Logic-based Error Detection and
Correction Module on AHB-APB Bridge, S. Anant Edidi; R. Marada; T.
Ali Khan & Chitra E

Computer forensics
Reversible watermarking is required to produce forensic evidence.

13

https://en.wikipedia.org/wiki/Data_integrity


Reversing Your Computation, but Why?– Concurrency perspective(s)

Concurrency and reversibility
Consider two symmetric labeled transition systems−−→· , ::→· enforcing:

R −−→a S ⇐⇒ S ::→a R (Loop Lemma)

1 Defining history

2 Defining independence

3 Defining dependence

14



Reversing Your Computation, but Why?– Defining history

Problem
How to organize reversible concurrency?

�

?

Solution
Each thread carries its own (causal) history.

15



Reversing Your Computation, but Why?– Defining history

Problem
How to organize reversible concurrency?

�

?

Solution
Each thread carries its own (causal) history.

15



Reversing Your Computation, but Why?– Defining history

Problem
How to organize reversible concurrency?

�

?

Solution
Each thread carries its own (causal) history.

15



Reversing Your Computation, but Why?– Defining independence

Defining independence (concurrency)

P

P1a

P2
b

⇒ P

P1a

P2
b

Q

b

a
P

P1a

P2

b

⇒ P

P2a

P2

b

Qb a

Drawn as:

Observation (forward-only)
Co-initial and composable definitions do not have to be related.

16



Reversing Your Computation, but Why?– Defining independence

Defining independence (concurrency)

P

P1a

P2
b

⇒ P

P1a

P2
b

Q

b

a
P

P1a

P2

b

⇒ P

P2a

P2

b

Qb a

Drawn as:

Observation (forward-only)
Co-initial and composable definitions do not have to be related.

16



Reversing Your Computation, but Why?– Defining independence

Observation (reversible)
Co-initial and composable, forward and backward definitions can easily be related.

R −−→a S ⇐⇒ S ::→a R (Loop Lemma)

=⇒ (Reversing preserves independence)1

1 An Axiomatic Approach to Reversible Computation, I. Lanese, I. Phillips, I. Ulidowski

Inter-defining

⇐⇒ ⇐⇒

⇐⇒ ⇐⇒

17



Reversing Your Computation, but Why?– Defining independence

Observation (reversible)
Co-initial and composable, forward and backward definitions can easily be related.

R −−→a S ⇐⇒ S ::→a R (Loop Lemma)

=⇒ (Reversing preserves independence)1

1 An Axiomatic Approach to Reversible Computation, I. Lanese, I. Phillips, I. Ulidowski

Inter-defining

⇐⇒ ⇐⇒

⇐⇒ ⇐⇒

17



Reversing Your Computation, but Why?– Defining independence

Observation (reversible)
Co-initial and composable, forward and backward definitions can easily be related.

R −−→a S ⇐⇒ S ::→a R (Loop Lemma)

=⇒ (Reversing preserves independence)1

1 An Axiomatic Approach to Reversible Computation, I. Lanese, I. Phillips, I. Ulidowski

Inter-defining

⇐⇒ ⇐⇒

⇐⇒ ⇐⇒

17



Reversing Your Computation, but Why?– Defining independence

Observation (reversible)
Co-initial and composable, forward and backward definitions can easily be related.

R −−→a S ⇐⇒ S ::→a R (Loop Lemma)

=⇒ (Reversing preserves independence)1

1 An Axiomatic Approach to Reversible Computation, I. Lanese, I. Phillips, I. Ulidowski

Inter-defining

⇐⇒ ⇐⇒

⇐⇒ ⇐⇒

17



Reversing Your Computation, but Why?– Defining independence

Observation (reversible)
Co-initial and composable, forward and backward definitions can easily be related.

R −−→a S ⇐⇒ S ::→a R (Loop Lemma)

=⇒ (Reversing preserves independence)1

1 An Axiomatic Approach to Reversible Computation, I. Lanese, I. Phillips, I. Ulidowski

Inter-defining

⇐⇒ ⇐⇒

⇐⇒ ⇐⇒

17



Reversing Your Computation, but Why?– Defining independence

Observation (reversible)
Co-initial and composable, forward and backward definitions can easily be related.

R −−→a S ⇐⇒ S ::→a R (Loop Lemma)

=⇒ (Reversing preserves independence)1

1 An Axiomatic Approach to Reversible Computation, I. Lanese, I. Phillips, I. Ulidowski

Inter-defining

⇐⇒ ⇐⇒

⇐⇒ ⇐⇒

17



Reversing Your Computation, but Why?– Defining dependence

Notation
Given two transitions t , u, we write

— t ι u if t and u are independent,

— t ] u if t and u are dependent.

Definition (forward-only)
t ι u iff neither t ] u nor t ] u hold.

Theorem (reversible)
t ι u iff not t ] u.

Work in progress, C. Aubert, I. Phillips, I. Ulidowski

18



Reversing Your Computation, but Why?– Defining dependence

Notation
Given two transitions t , u, we write

— t ι u if t and u are independent,

— t ] u if t and u are dependent.

Definition (forward-only)
t ι u iff neither t ] u nor t ] u hold.

Theorem (reversible)
t ι u iff not t ] u.

Work in progress, C. Aubert, I. Phillips, I. Ulidowski

18



Reversing Your Computation, but Why?– Defining dependence

Notation
Given two transitions t , u, we write

— t ι u if t and u are independent,

— t ] u if t and u are dependent.

Definition (forward-only)
t ι u iff neither t ] u nor t ] u hold.

Theorem (reversible)
t ι u iff not t ] u.

Work in progress, C. Aubert, I. Phillips, I. Ulidowski

18



Reversing Your Computation, but Why?– Defining dependence

Notation
Given two transitions t , u, we write

— t ι u if t and u are independent,

— t ] u if t and u are dependent.

Definition (forward-only)
t ι u iff neither t ] u nor t ] u hold.

Theorem (reversible)
t ι u iff not t ] u.

Work in progress, C. Aubert, I. Phillips, I. Ulidowski
18



Reversing Your Computation, but Why?– Thanks!

Thanks!
Feel free to reach out to

caubert@augusta.edu

19

caubert@augusta.edu


Reversing Your Computation, but Why?– Connexions!

Sjouke Mauw

20



Reversing Your Computation, but Why?– Connexions!

Krzysztof Ziemianski & Uli Fahrenberg

21



Reversing Your Computation, but Why?– Connexions!

Ross Horne & Christian Johansen

& Rob van Glabbeek!

22



Reversing Your Computation, but Why?– Connexions!

Ross Horne & Christian Johansen & Rob van Glabbeek!

22


