Reversing Your Computation, but Why?
Meeting on Foundations of Security and Concurrency

Clément Aubert

Augusta University, School of Computer & Cyber Sciences, GA, USA

=

July 4th, 2024

> Output

Execution

Input

> Output

Execution

Input

Reversing Your Computation, but Why?— Introduction

Execution

> Output

Input

900000000000000000000
J000000F 90000000000

400000000000000000000

16

Reversing Your Computation, but Why?— Introduction

Execution
Input > Output

16

O
o
o

4

[=[=]=]%
oooe

unzip

9000,

archive folder & files

N
kS

00000000000000000000F

DOuuyUULLLL
0000000000L
00000000000L

[

Reversing Your Computation, but Why?— Introduction

Input

16

archive

flac

Execution
> Output
Calc 4
unzip
Zip folder & files
Q..
convert in
vie T > wav

oou
ooo
ooo

[

Reversing Your Computation, but Why?— Introduction

Forward Execution
Input &~~~ "> Output
Backward Execution

16 g Calc 4
unzip w
archive EEO Zip > folder & files
convert| &5 s
Vel ————>
flac s vie wav

[

Reversing Your Computation, but Why?— Introduction

Forward Execution
Input &~~~ "> Output
Backward Execution

O
o
o

2

[=[=]=]%
oooe

unzip| g8
archive «<———_| % Zip < folder & files
g zip
convert| g3 38
flac «————_FiiT vlc < ——_—_2 wav
e convert

Reversing Your Computation, but Why?— Introduction

Forward Execution

Input

> Output

Backward Execution

1 ES o
unzip

O
o
o

[=[=]=]%
oooe

4
2

archive < _——_—_|

convert
flac «c——_2

[ATETeT

First observation

Zip '« folder & files
2 Z1p

vic <> wav
as convert

We reverse computations (“uncompute”) frequently actually!

)
S
<
=

©
S
<

I

Reversing Your Computation, but Why?—What is “reversible”?

Observation
Reversible hardware can only execute reversible software.

Reversing Your Computation, but Why?—What is “reversible”?

& -
L

SSaaggs

gooses

5o00oeg

23edee Versus

o

A

ap

¢ 3
.

8882838

Observations

Reversible hardware can only execute reversible software.
Reversible programs can be compiled into two (forward-only) programs.

Reversing Your Computation, but Why?—What s “reversible”?

Algorithms

High-level languages logically reversible layers
Machine code

Computer architecture
Gate level physically reversible layers

Physical implementation

Obs

Re Fig. 2. The hardware and software stack of a reversible computing system.
v

Rev_.omeprogre.. _ - 4DECO1plon oo v IOTWell . sy, 0logd@. e

Reversible computing from a programming language perspective, R. Glick, T. Yokoyama

Reversing Your Computation, but Why?—What “is” reversible?

Question
Can any program be reversed?

Reversing Your Computation, but Why?—What “is” reversible?

Question
Can any program be reversed? No!

Reversing Your Computation, but Why?—What “is” reversible?

Questions
Can any program be reversed? No!
Can any program have an “equivalent” reversible program?

LI I
(A, B) Calc A

BEELER

Reversing Your Computation, but Why?—What “is” reversible?

Questions
Can any program be reversed? No!
Can any program have an “equivalent” reversible program? Yes!

Landauer embed.

Reversing Your Computation, but Why?—What “is” reversible?

Questions
Can any program be reversed? No!
Can any program have an “equivalent” reversible program? Yes! (twice!)

Cle———_ZA
1

Landauer embed. Bennett trick
Us! 4
(A, B) . Cal . +(A, B)

4

Reversing Your Computation, but Why?—What “is” reversible?

Questions
Can any program be reversed? No!
Can any program have an “equivalent” reversible program? Yes! (twice!)

Bennett method Another way to reversibilize a program p is to preserve its input in the output. The reversibilized version
ﬁbe” then returns the original output [[p]; x together with the input x:

3" g x = ([p]L X. X). (15)

Although adding x to the output of f)be" may seem like a simple change from a functional viewpoint, implementing it in a
reversible language is not. We should keep in mind that E’Je" must be implemented in a reversible language R, which means
it cannot be built from destructive (non-injective) statements like p, only from reversible statements. It is not sufficient to

add a statement to f)b"” that copies x to the output and otherwise run p with its irreversible statements.

Reversible computing from a programming language perspective, R. Gliick, T. Yokoyama

Reversing Your Computation, but Why?—What “is” reversible?

Questions
Can any program be reversed? No!

Can any program have an “equivalent” reversible program? Yes! (twice!)
Should any program be reversible?

Landauer embed. Bennett trick

ue

885u3s8

Reversing Your Computation, but Why?—What “is” reversible?

Questions

Can any program be reversed? No!

Can any program have an “equivalent” reversible program? Yes! (twice!)
Should any program be reversible? No!

Landauer embed. Bennett trick
ug ‘
aoroul - @ ws
Encrypt

Key & file

>
£

Reversing Your Computation, but Why?—But... Why?

Question
But ... why would we want to reverse our computation(s)?

> archive

unzip .
archive > Zip folder & files
zip (-
folder & files le i

Encrypt ‘EE
Key & file —————~—> GPG - Encrypted file
—

Reversing Your Computation, but Why?—But... Why?

Question
But ... why would we want to reverse our computation(s)?

unzip .
archive > Zip ‘—> folder & files

. zip ('1 _
folder & files > Zip > archive
) Encrypt ‘ i
Key & file —————~—> GPG - Encrypted file
—

Mottos
© Futur(e|istic) hardware will need it.
® Constraint software = better control = more guarantees.
@ Interesting links to concurrency.

Reversing Your Computation, but Why?—Hardware perspective(s)

Computing paradigms connected to reversibility (and their fields)
© Low-power electronics (Thermodynamic)
® Quantum computing (Linear algebra)
® Chemical computing (Theoretical chemistry)

And remember that we can adopt only a part of a paradigm.

Reversing Your Computation, but Why?— Low-power electronics

Landauer’s principle
Logically irreversible transformation dissipates heat.

Reversing

Landauer’s prin
Logically irrevers

- N T !

Letter \ Published: 07 March 2012

Experimental verification of Landauer’s principle
linking information and thermodynamics

Antoine Bérut, Artak Arakelyan, Artyom Petrosyan, Sergio Ciliberto, Raoul Dillenschneider & Eric

L&

Nature 483, 187-189 (2012) | Cite this article

22k Accesses |789 Citations \ 225 Altmetric \ Metrics

Abstract

In 1961, Rolf Landauer argued that the erasure of information is a dissipative process!. A
minimal quantity of heat, proportional to the thermal energy and called the Landauer bound,
is necessarily produced when a classical bit of information is deleted. A direct consequence of
this logically irreversible transformation is that the entropy of the environment increases by a
finite amount. Despite its fundamental importance for information theory and computer
science2>%3, the erasure principle has not been verified experimentally so far, the main
obstacle being the difficulty of doing single-particle experiments in the low-dissipation
regime. Here we experimentally show the existence of the Landauer bound in a generic model
of a one-bit memory. Using a system of a single colloidal particle trapped in a modulated
double-well potential, we establish that the mean dissipated heat saturates at the Landauer
bound in the limit of long erasure cycles. This result demonstrates the intimate link between
information theory and thermodynamics. It further highlights the ultimate physical limit of

irreversible computation.

il et A b . Pt e b o

lectronics

Reversing Your Computation, but Why?— Low-power electronics

Landauer’s principle
Logically irreversible transformation dissipates heat.

Landauer’s principle — extrapolated
Logically reversible transformation uses no energy.

Reversing Your Computation, but Why?— Low-power electronics

Landauer’s principle
Logically irreversible transformation dissipates heat.

Landauer’s principle — extrapolated
Logically reversible transformation uses no energy.

Hope
Reversible computers could use less energy.

Reversing Your Computation, but Why?— Quantum computing

Unitary matrices [Wikipedia]

An invertible complex square matrix U is unitary if its matrix inverse U~ equals its
conjugate transpose U*, that is, if

U*U=UU"=id

https://en.wikipedia.org/wiki/Unitary_matrix

Reversing Your Computation, but Why?— Quantum computing

Unitary matrices [Wikipedia]

An invertible complex square matrix U is unitary if its matrix inverse U~ equals its
conjugate transpose U*, that is, if

U*U=UU"=id

Conclusion
Quantum circuits? have to be reversible.

#Without e.g., measurement.

https://en.wikipedia.org/wiki/Unitary_matrix

Reversing Your Computation, but Why?— Quantum computing

Uni 0
VOLUME 80, NUMBER 15 PHYSICAL REVIEW LETTERS 13 APrIL 1998

Ani s its

cony Experimental Implementation of Fast Quantum Searching

Isaac L. Chuang,"* Neil Gershenfeld,> and Mark Kubinec?
'IBM Almaden Research Center K10/D1, 650 Harry Road, San Jose, California 95120)
zPhysics and Media Group, MIT Media Lab, Cambridge, Massachusetts 02139
3College of Chemistry, D7 Latimer Hall, University of California, Berkeley, Berkeley, California 94720-1460

Cor (Received 21 November 1997; revised manuscript received 29 January 1998)
Using nuclear magnetic resonance techniques with a solution of chloroform molecules we implement
Qua Grover’s search algorithm for a system with four states. By performing a tomographic reconstruction

of the density matrix during the computation good agreement is seen between theory and experiment.

ay This provides the first complete experimental demonstration of loading an initial state into a quantum
computer, performing a computation requiring fewer steps than on a classical computer, and then

— reading out the final state. [S0031-9007(98)05850-5] —

PACS numbers: 89.70.+c, 03.65.-w

P e i S S N S S -

https://en.wikipedia.org/wiki/Unitary_matrix

Reversing Your Computation, but Why?— Chemical computing

Chemical computer [Wikipidea]

A chemical computer is an unconventional computer where data are represented by
varying concentrations of chemicals.

https://en.wikipedia.org/wiki/Chemical_computer
https://en.wikipedia.org/wiki/Reversible_reaction

Reversina Your Computation, but Whv?— Chemical computing

B L,

Chemical cor

A chemical cor
varying concel

MeasuredpH o

WMeasured pH

=L ‘epresented by

Elapsed Time (5)

»
ﬂ.ﬁ'@'

AccerT

-

Precipitate
ACCEPT

Measured pH ®

Measured pH

Measured pH

No precipitate
REJECT

@ IV S S P

How Chemistry Computes: Language Recognition by Non-Biochemical
Chemical Automata. From Finite Automata to Turing Machines, M.
Duenas-Diez, J. Pérez-Mercader

https://en.wikipedia.org/wiki/Chemical_computer
https://en.wikipedia.org/wiki/Reversible_reaction

Reversing Your Computation, but Why?— Chemical computing

A chemical computer is an unconventional computer where data are represented by

Chemical computer [Wikipidea]
varying concentrations of chemicals. J

Reversible reaction [Wikipedia]
aA +bB == cC + dD J

https://en.wikipedia.org/wiki/Chemical_computer
https://en.wikipedia.org/wiki/Reversible_reaction

Reversing Your Computation, but Why?— Chemical computing

Chemical computer [Wikipidea]

A chemical computer is an unconventional computer where data are represented by
varying concentrations of chemicals.

Reversible reaction [Wikipedia]
aA+bB—=—cC+dD

Hope
Reversible chemical computers?

https://en.wikipedia.org/wiki/Chemical_computer
https://en.wikipedia.org/wiki/Reversible_reaction

10

Reversing Your Computation, but Why?— Software perspective(s)

Software benefits provided by reversibility
© Development
® Verification
® Security

And remember that we can execute reversible programs on irreversible hardware.

11

Reversing Your Computation, but Why?— Software development

Motto
Constraining the programmer can be a good thing.

11

Reversing Your Computation, but Why?— Software development

Mot

imaginable algorithm as long as it works in polynomial time. Implicit computational complexity theory studies classes of
Con functions (problems, languages) that are defined without imposing explicit resource bounds on machine models, but rather
by imposing linguistic constraints on the way algorithms can be formulated. When we explicitly restrict our language for
formulating algorithms, that is, our programming language, then we may implicitly restrict the computational resources
needed to execute algorithms. If we manage to find a restricted programming language that captures a complexity class,
then we will have a so-called implicit characterization. A seminal example is Bellantoni & Cook’s [3] characterization of
gt e At b . Pt e b _

el

Reversible computing and implicit computational complexity, L. Kristiansen

11

Reversing Your Computation, but Why?— Software development

Motto
Constraining the programmer can be a good thing.

Reminder
Reversible programs can be compiled into two (forward-only) programs.

11

Mc
Cc

Re
Re

Reversing Your Computation, but Why?— Software development

SOURCE CODES IN RC2024 PAPER

The following are complete implementation of the algorithms in the reversible language Janus, appeared in [1].

e LZW: A reversible implementation of LZW running in O(n) time and using O(n) space.
e BWT: A reversible implementation of BWT running in O(n/3) time and using O(n) space.
e source code

[1] Lyngby, T., Nylandsted, R.R., Gliick, R., Yokoyama, T. (2024). Towards Clean Reversible Lossless
Compression: A Reversible Programming Experiment with Zip. In: Mogensen, T.&., Mikulski, £. (eds)
Reversible Computation. RC 2024. Lecture Notes in Computer Science, vol 14680. Springer, Cham.
https://doi.org/10.1007/978-3-031-62076-8_7

12

Reversing Your Computation, but Why?— Software verification

Verify a zip program
© Write the zip routine.

® Write the unzip routine.
O Verify

© zip o unzip = id,

® unzip o zip = id.

12

Reversing Your Computation, but Why?— Software verification

Verify a zip program
© Write the zip routine.

® Write the unzip routine.
O Verify

© zip o unzip = id,

® unzip o zip = id.

Verify a reversible zip program
© Write the zip routine.

13

Reversing Your Computation, but Why?— Security

Data integrity [Wikipedia]
Ensuring that the data remains the same as when it was originally recorded.

https://en.wikipedia.org/wiki/Data_integrity

13

Reversing Your Computation, but Why?— Security

Data in P
Ensurin Mmore efficiently. In this research work, we offer an error detection
and correction module using reversible logic which has a reduced
power consumption and also boosts efficiency which is integrated
onto the AHB-APB interface to detect and rectify faults that may
occur in data transmission. The proposed model contains a ECC

Improving Data Integrity with Reversible Logic-based Error Detection and
Correction Module on AHB-APB Bridge, S. Anant Edidi; R. Marada; T.
Ali Khan & Chitra E

https://en.wikipedia.org/wiki/Data_integrity

13

Reversing Your Computation, but Why?— Security

Data integrity [Wikipedia]
Ensuring that the data remains the same as when it was originally recorded.

Computer forensics
Reversible watermarking is required to produce forensic evidence.

https://en.wikipedia.org/wiki/Data_integrity

13

Data in
Ensurin

CompL
Reversi

Reversing Your Computation, but Why?— Security

Review Article

Reversible Watermarking Techniques:
An Overview and a Classification

—

Roberto Caldelli, Francesco Filippini, and Rudy Becarelli

MICC, University of Florence, Viale Morgagni 65, 50134 Florence, Italy

Correspondence should be addressed to Roberto Caldelli, roberto.caldelli@unifi.it

Received 23 December 2009; Accepted 17 May 2010

Academic Editor: Jiwu W. Huang

Copyright © 2010 Roberto Caldelli et al. This is an open access article distributed under the Creat
License, which permits unrestricted use, distribution, and reproduction in any medium, provided th
cited.

An overview of reversible watermarking techniques appeared in literature during the last five years

—_— v I PP L S VoY a 4

https://en.wikipedia.org/wiki/Data_integrity

14

Reversing Your Computation, but Why?— Concurrency perspective(s)

Concurrency and reversibility
Consider two symmetric labeled transition systems —, ~~ enforcing:

R%S «— SR (Loop Lemma)

© Defining history
® Defining independence
©® Defining dependence

Reversing Your Computation, but Why?— Defining history

Problem
How to organize reversible concurrency?

z/ >)

15

15

Reversing Your Computation, but Why?— Defining history

Problem
How to organize reversible concurrency?
(/\/\,‘
?
7 =Y
z/ } >
Solution

Each thread carries its own (causal) history.

15

Pro
How

Sol
Eac

Reversing Your Computation, but Why?— Defining history

EDITOR: Markus Schordan, schordanl@linl.gov

DEPARTMENT: SOFTWARE TECHNOLOGY

Reversible Computing in Debugging of

Erlang Programs

Ivan Lanese @, University of Bologna/INRIA, 40126, Bologna, Italy
Ulrik P. Schultz ., University of Southern Denmark, 5230, Odense, Denmark

Irek Ulidowski ., University of Leicester, Leicester, LE1 7RH, U.K.
el st P e U U SR N S NI

16

Reversing Your Computation, but Why?— Defining independence

Defining independence (concurrency)

P P P P;
EAR- e V- A ¥ 2N
P = P Q P P, =P Py
b* p, %,%4 }04

Drawn as:
AN AN
~N ~N

16

Reversing Your Computation, but Why?— Defining independence

Defining independence (concurrency)

P P P P
EAR- e V- A ¥ 2N
P = P Q P P, =P Py
b* p, %,%4 }04

Drawn as:
AN AN
~N ~N

Observation (forward-only)
Co-initial and composable definitions do not have to be related.

17

Reversing Your Computation, but Why?— Defining independence

Observation (reversible)
Co-initial and composable, forward and backward definitions can easily be related.

17

Reversing Your Computation, but Why?— Defining independence

Observation (reversible)
Co-initial and composable, forward and backward definitions can easily be related.

R-2+S «— S~* R (LoopLemma)

N

= (Reversing preserves independence)’

Y

' An Axiomatic Approach to Reversible Computation, |. Lanese, |. Phillips, |. Ulidowski

17

Reversing Your Computation, but Why?— Defining independence

Observation (reversible)
Co-initial and composable, forward and backward definitions can easily be related.

R-2+S «— S~* R (LoopLemma)

N

= (Reversing preserves independence)’

Y

' An Axiomatic Approach to Reversible Computation, |. Lanese, |. Phillips, |. Ulidowski

Inter-defining

AN N AN N
< N /\@f\ﬁ

17

Reversing Your Computation, but Why?— Defining independence

Observation (reversible)
Co-initial and composable, forward and backward definitions can easily be related.

R-2+S «— S~* R (LoopLemma)

N

= (Reversing preserves independence)’

Y

' An Axiomatic Approach to Reversible Computation, |. Lanese, |. Phillips, |. Ulidowski

Inter-defining

NG N AN N
N o N o
~ N

17

Reversing Your Computation, but Why?— Defining independence

Observation (reversible)
Co-initial and composable, forward and backward definitions can easily be related.

R-2+S «— S~* R (LoopLemma)

N

= (Reversing preserves independence)’

Y

' An Axiomatic Approach to Reversible Computation, |. Lanese, |. Phillips, |. Ulidowski

Inter-defining

AN N AN N
N A N o
NS N N

Reversing Your Computation, but Why?— Defining independence

Observation (reversible)
Co-initial and composable, forward and backward definitions can easily be related.

R4S «— S~ R (Looolemma)

. e . 0 [4 .
is the loop lemma, that states that any transition in a reversible system ¢ : X— Y can be reversed® as r* : Y ~» X with (+*)" = ¢. From
there, a correctness criterion linking —; and —, can easily be formulated:

0 0;
(ty —t, fore : x5 X,y X X3)

0
Ed U for X \,’J\) Xty X =X) (Correctness of Concurrencies)
l—.—-—ﬂ'dbl‘ﬂ""l /J I Sy R / / s D S Ny e

AN N AN N
N AN A

=

~ N QN

17

18

Reversing Your Computation, but Why?— Defining dependence

Notation

Given two transitions t, u, we write
— tvuif tand u are independent,
— tx<uif t and u are dependent.

18

Reversing Your Computation, but Why?— Defining dependence

Notation

Given two transitions t, u, we write
— tvuif tand u are independent,
— tx<uif t and u are dependent.

Definition (forward-only)
t . uiff neither t < u nor t < u hold.

18

Reversing Your Computation, but Why?— Defining dependence

Notation

Given two transitions t, u, we write
— tuif tand u are independent,
— t=uif tand u are dependent.

Definition (forward-only)
t . uiff neither t < u nor t < u hold.

Theorem (reversible)
tvuiffnot t < u.

18

Reversing Your Comoutation

Notatio
Given t
I tL {

— tx

Definiti
teuiffi

Theore
teuiffi

Dependence Relation

bt Why ?— Definina denendence

Independence Relation

Action Action
Al 0 is not a prefix
alk] < 6 0 = alk] A (empty)
Choice Choice
0=0 T — C? 0.0 o
440 < +40' +af > +30 +a0 ¢ 446’
Parallel Parallel
4 £(0) = £(0 4 #(0) # £(0
0><t9/P1 (9) ()Pi GLG,PI ()#()Pi
[a0 < |40 [af < |70" [af ¢ |ab [a0 ¢ |56
Synchronisation Synchronisation
0 = 0 gt Oq < 0 0104 gt 040 5
[af > (|6, [ROR) (ILOL, [rOR) > [a0 a6 ¢ (|LOL, [rOr) (ILbL, [rOr) ¢ [af
0:<0; 0;Y0; i,je{l,2}i#j 5 01007 02004 @
(|LO1, |[rO2) = (|LO1, |r0O3) (IL01, [r02) ¢ (|LO1, [rO5)
el s At . Tt e o o —

Work in progress, C. Aubert, I. Phillips, I. Ulidowski

Thanks!
Feel free to reach out to

caubert@augusta.edu

caubert@augusta.edu

Reversing Your Computation, but Why?— Connexions!

Sjouke Mauw

» Pebble node 1: (1) = h(1) [erase]
» Pebble node 2: 1(2) = h(2) [erase]
» Pebble node 3: 1(3) = h(3||I(1)(|I(2))
> Pebble node 4: 1(4) = h(4||I(1)]|1(2))
input nodes: {1,2} » Pebble node 5: I(5) = h(5]|I(3)[/I(4))

output nodes: {5}

P Ve A S B NS Y -

Reversing Your Computation, but Why?— Connexions!

Krzysztof Ziemianski & Uli Fahrenberg

X[0] = {v,w,z,y} T ‘yT
Xla] = {e. /) (A
X[[3]] = {a} 1|T
1x = {v,g} e

1 o
Tx ={hy g} v a w

Fig.5: A two-dimensional HDA X on X = {a, b}, see Ex.[7]

terminate some events (upper faces) or “unstart” some events (lower faces), i.e.,
et et~ W e i S U NS S NN B

21

22

Reversing Your Computation, but Why?— Connexions!
Ross Horne & Christian Johansen

4.3 History-Preserving similarity: preserving causality

Besides observing the duration of events as in ST semantics, History-Preserving semantics observe also
the partial order of causal dependencies between events. We define here HP-similarity as a strengthen-
ing of our definition of ST-similarity such that we observe not only independence but also dependence,

P W i O U S NS Y NN _

22

Reversing Your Computation, but Why?— Connexions!
Ross Horne & Christian Johansen & Rob van Glabbeek!

4.3 History-Preserving similarity: preserving causality

Besides observing the duration of events as in ST semantics, History-Preserving semantics observe also
the partial order of causal dependencies between events. We define here HP-similarity as a strengthen-
ing of our definition of ST-similarity such that we observe not only independence but also dependence,

P W i O U S NS Y NN _

