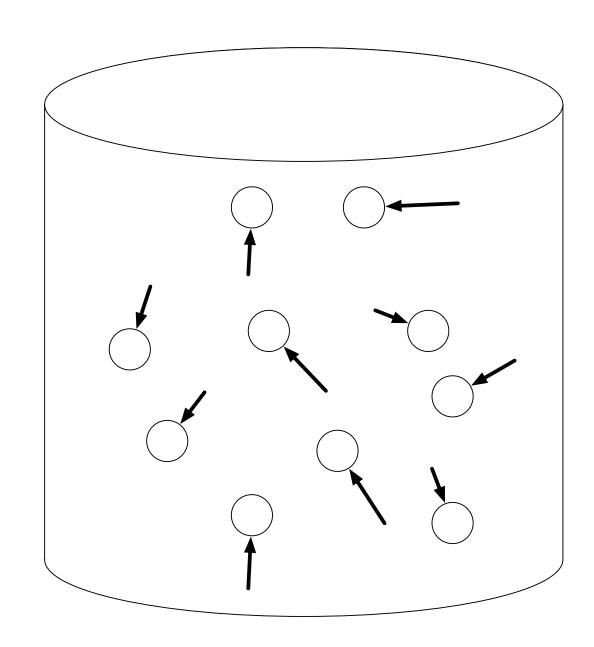
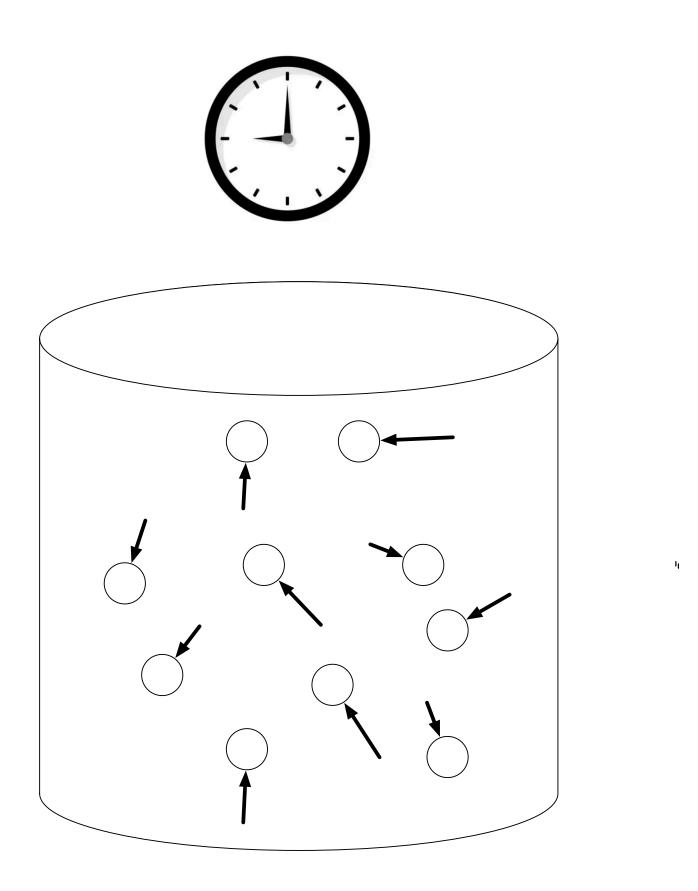
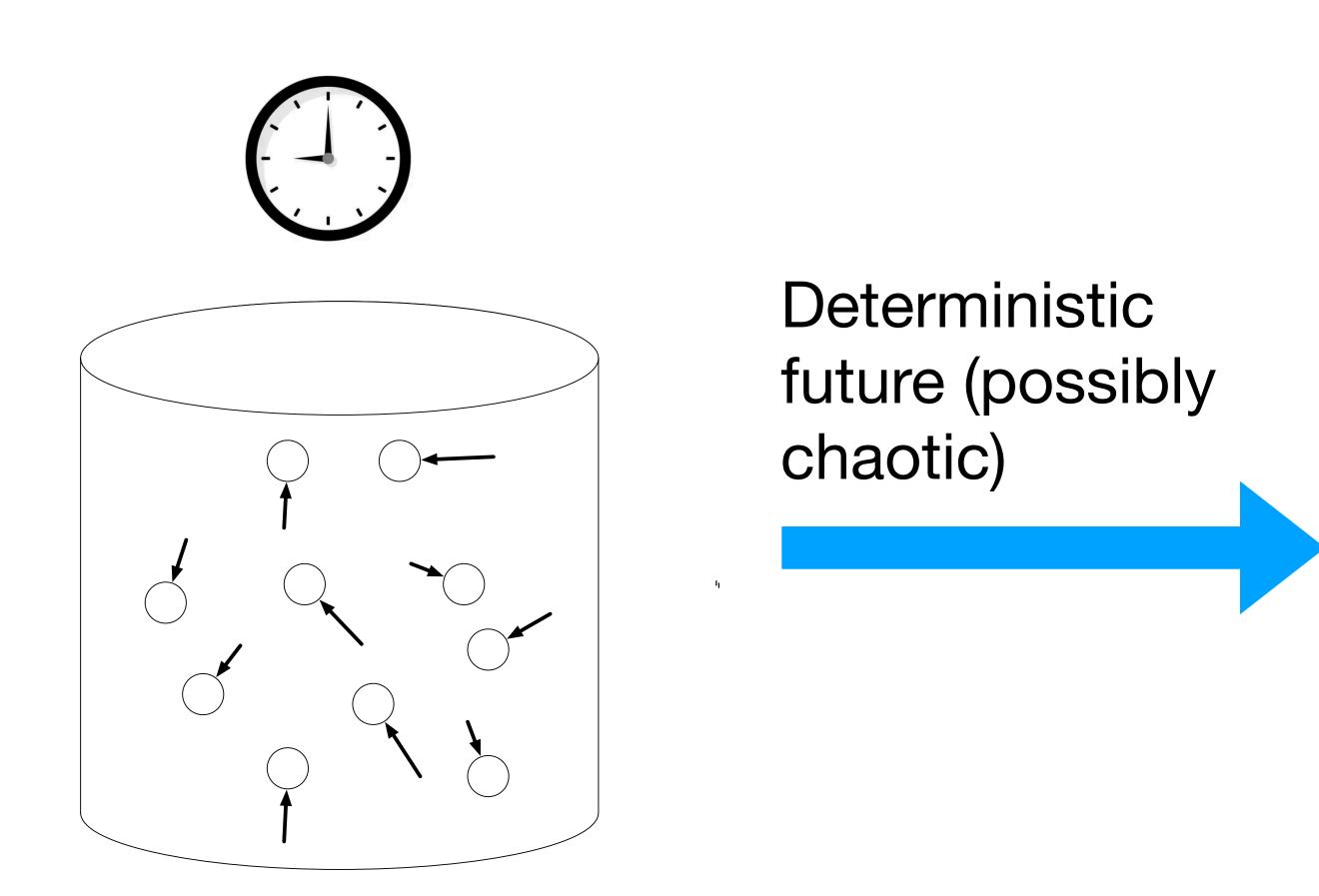
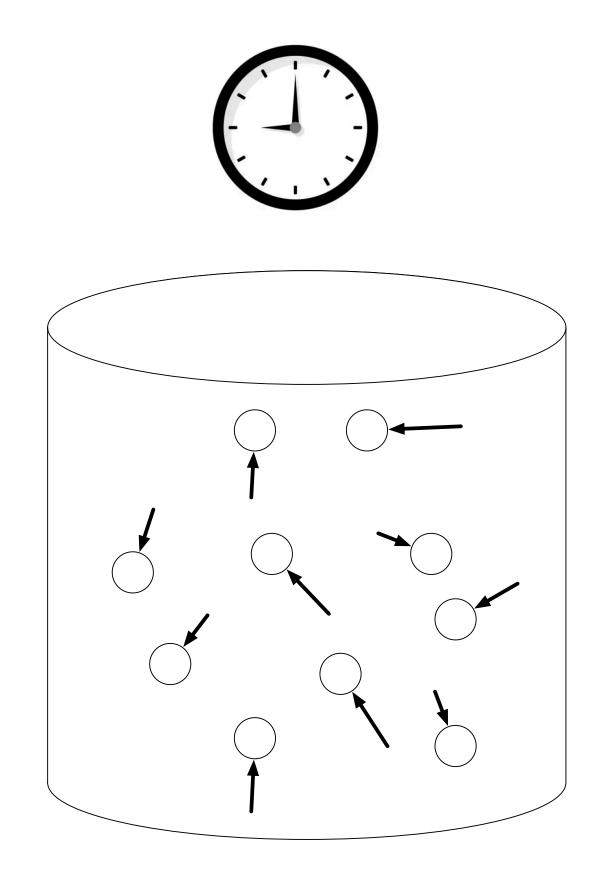
Reversible computations are computations

Clément Aubert (Augusta Univ, USA), Jean Krivine (CNRS, IRIF Paris)

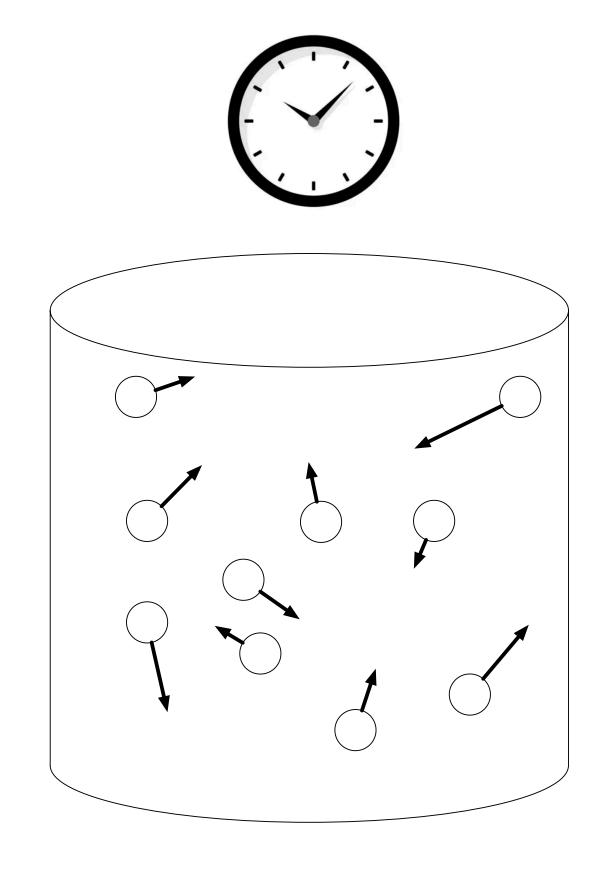


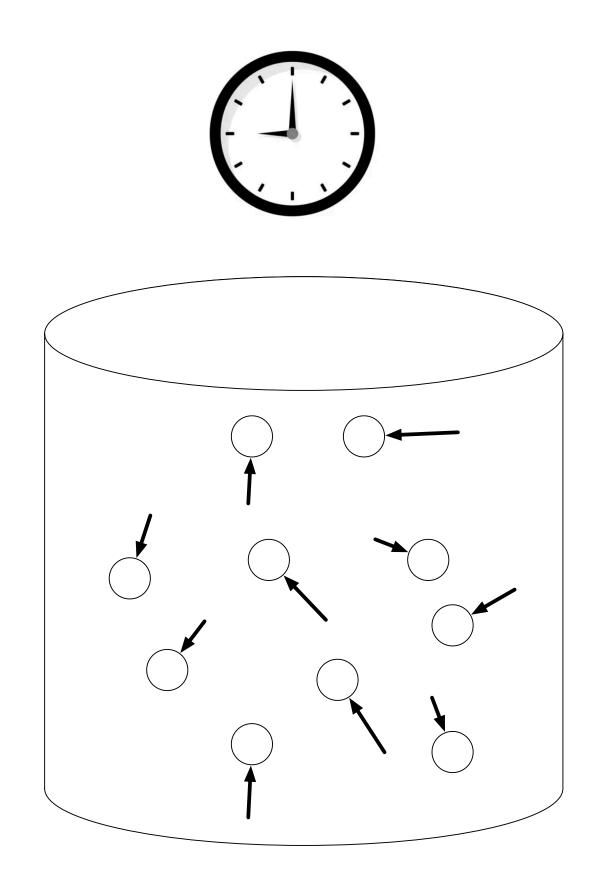




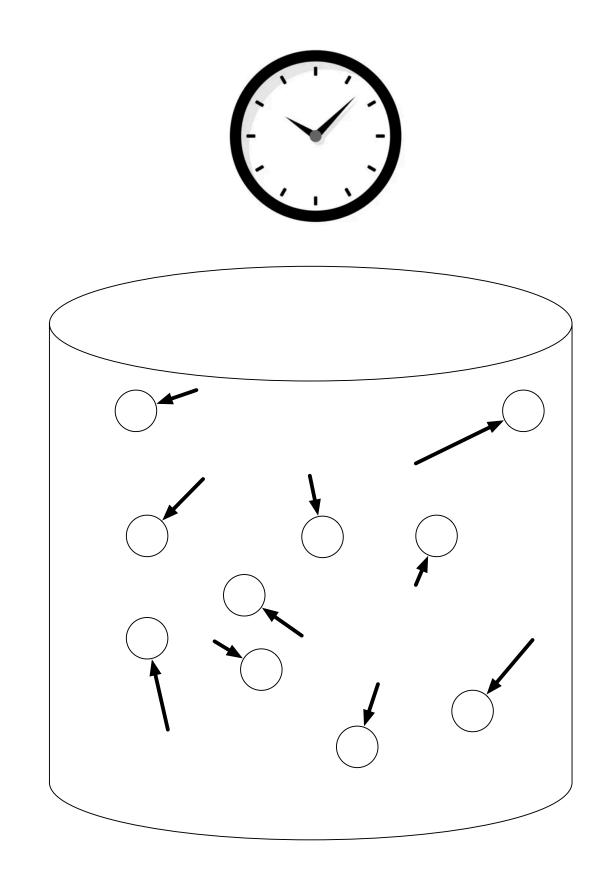


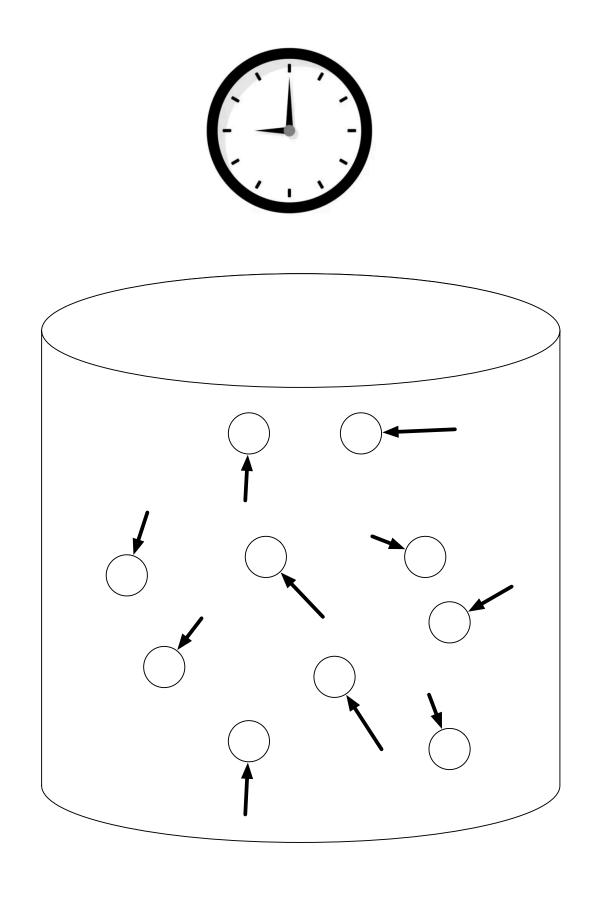
Deterministic future (possibly chaotic)





Deterministic future (possibly chaotic)



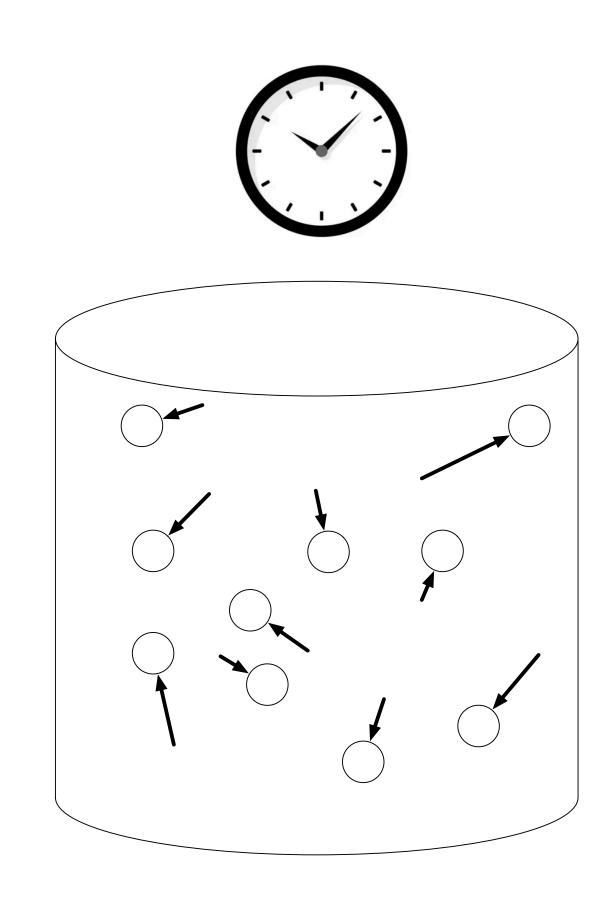


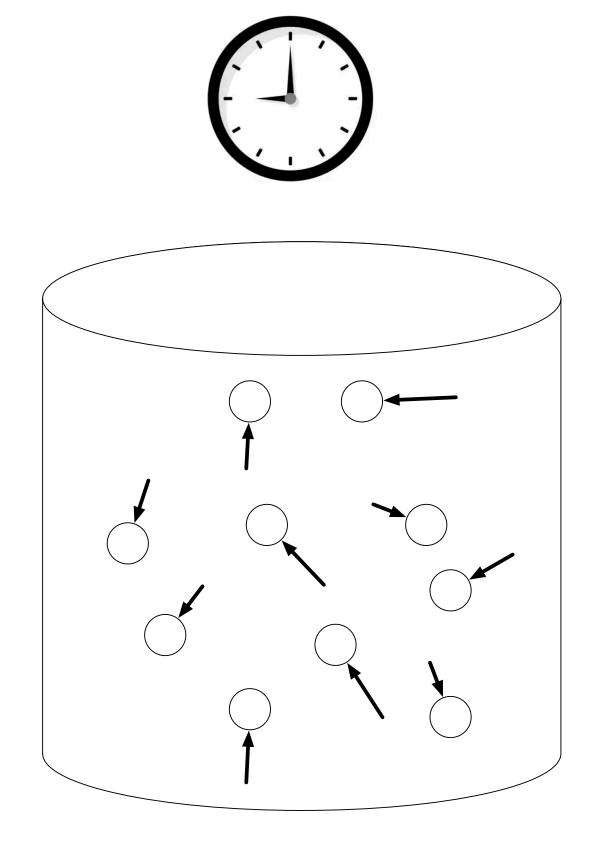
Move and collide (local interactions)

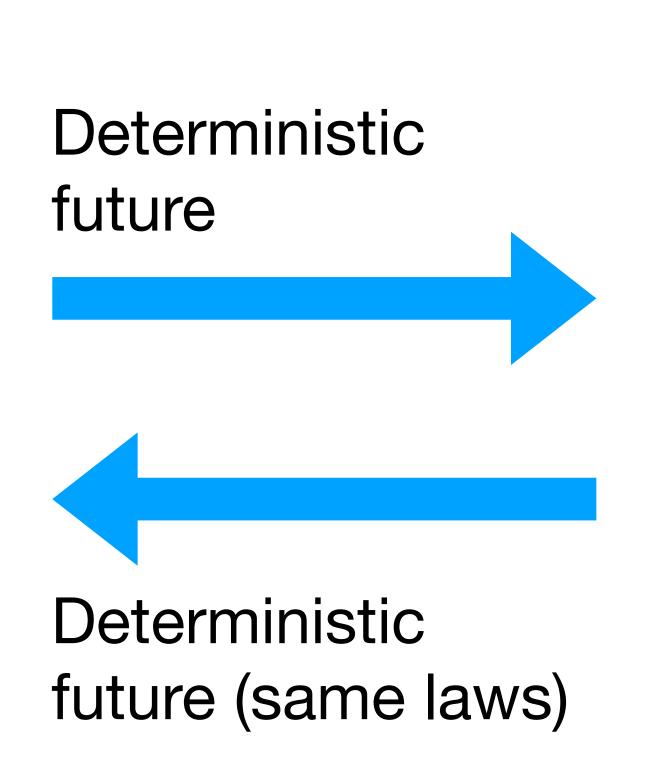
Deterministic future (possibly chaotic)

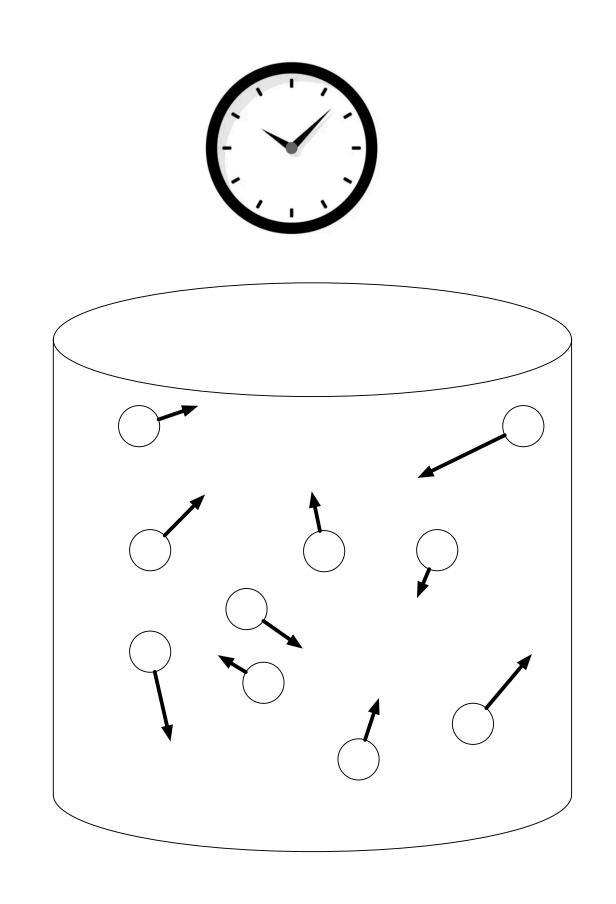
Deterministic

Deterministic future (same laws)

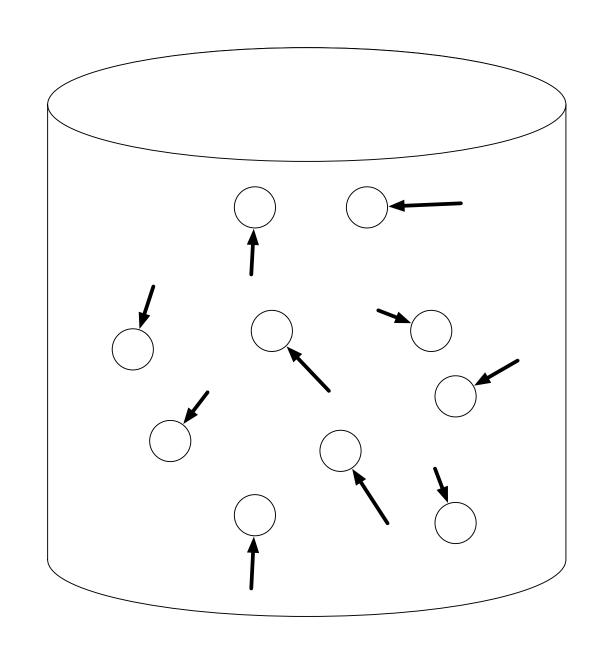


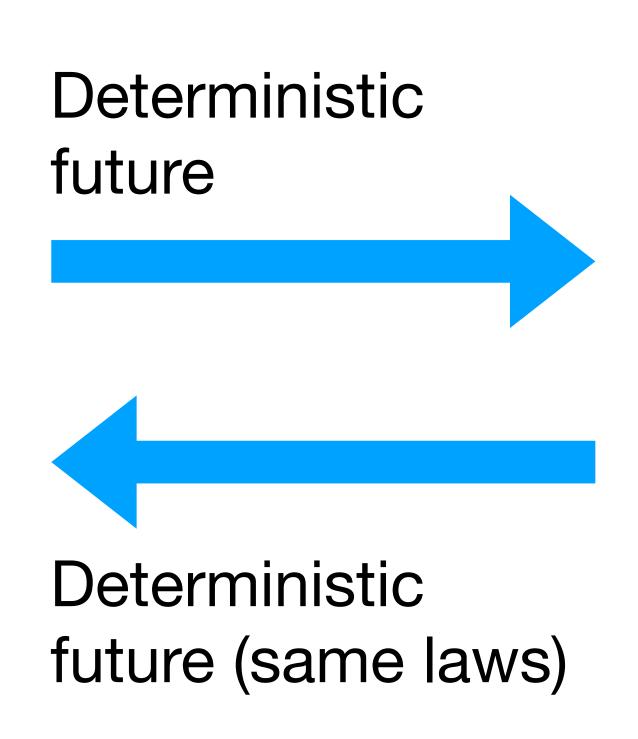


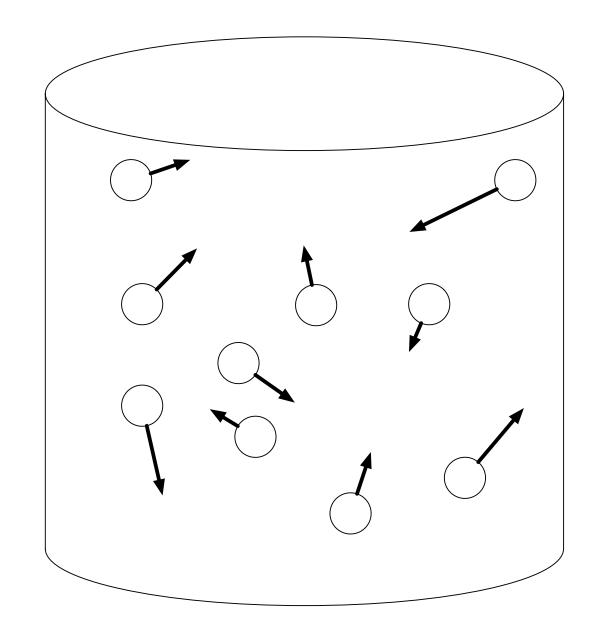




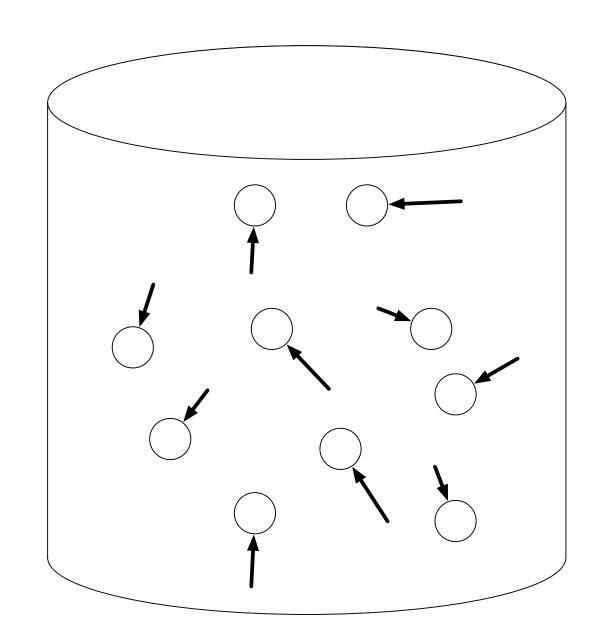
Quantify over all possible schedulings



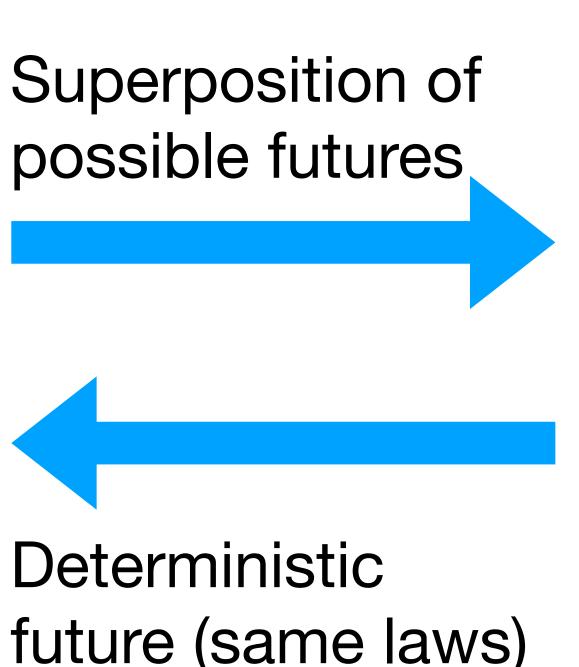




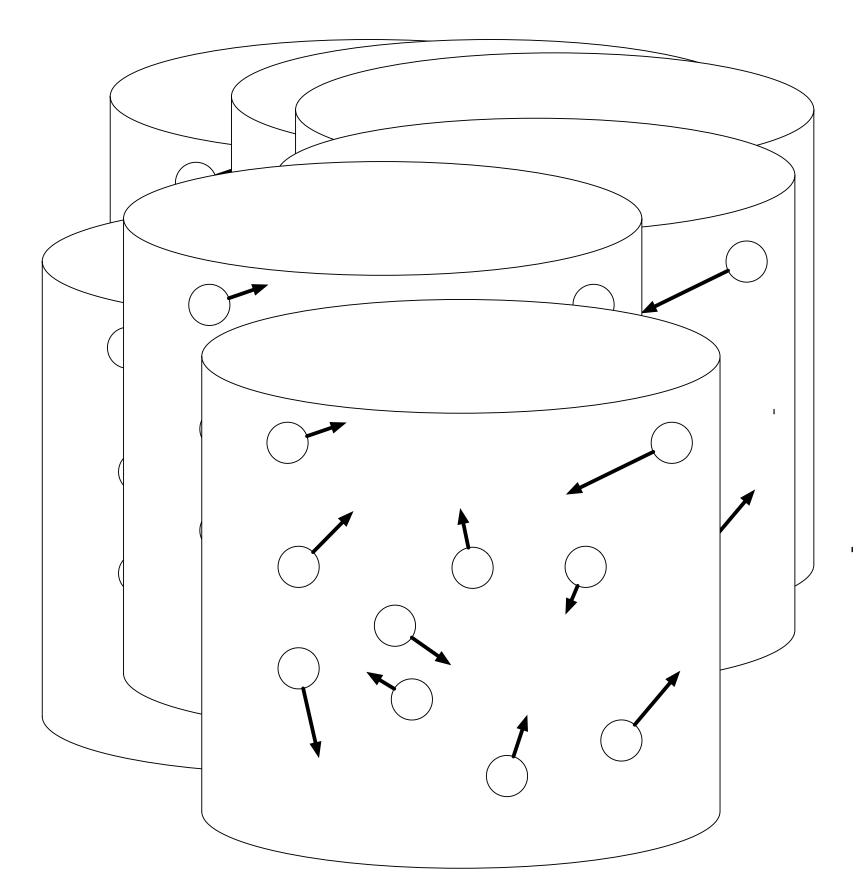
Quantify over all possible schedulings



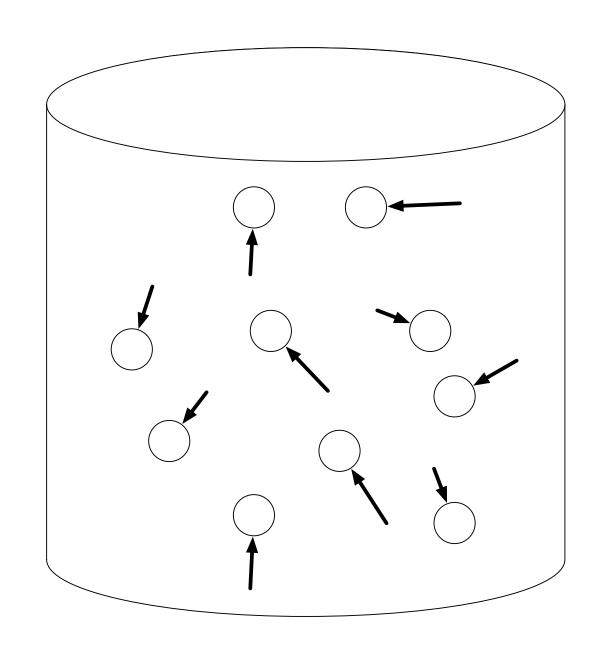
Move and collide (local interactions)



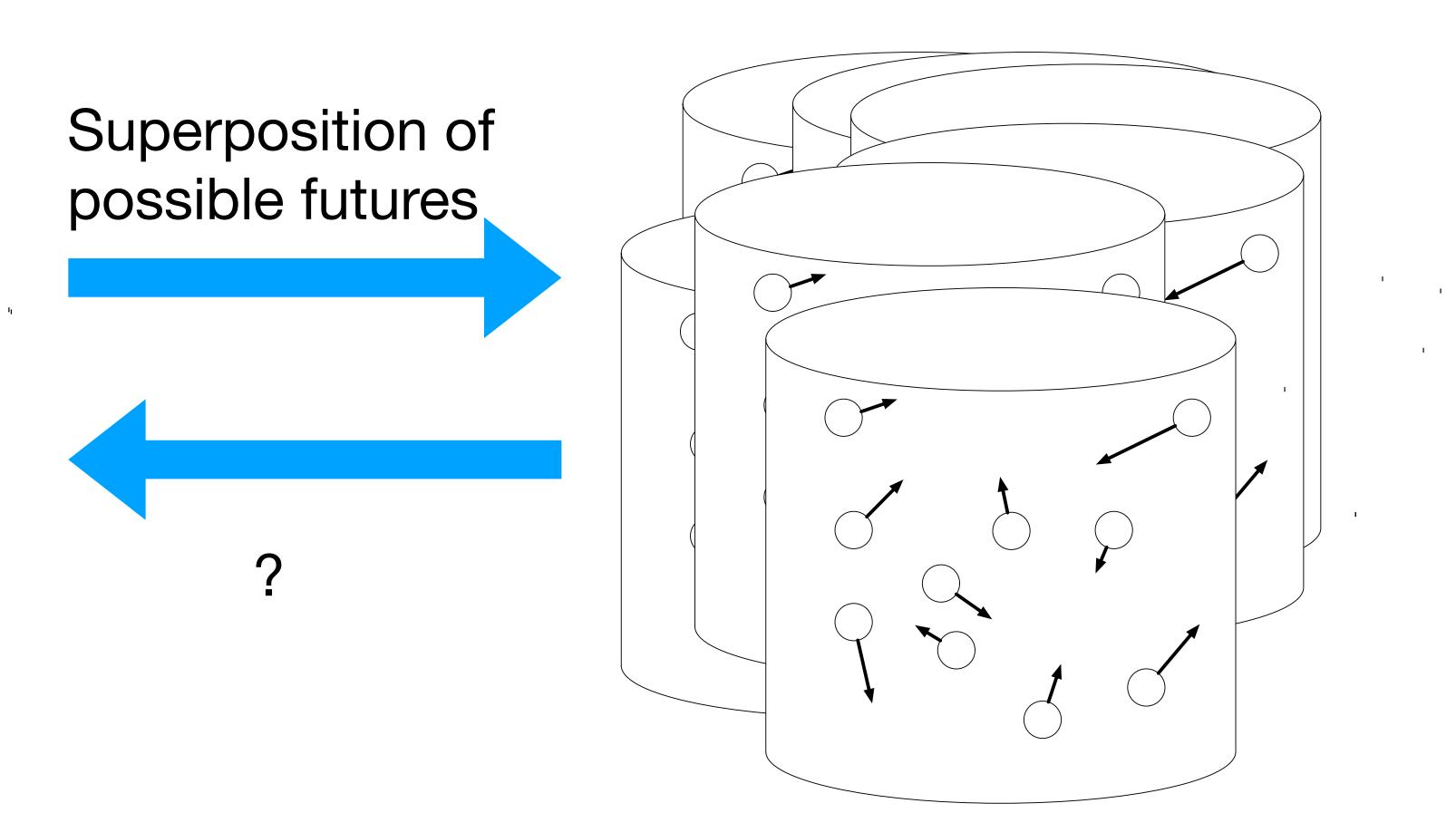
future (same laws)



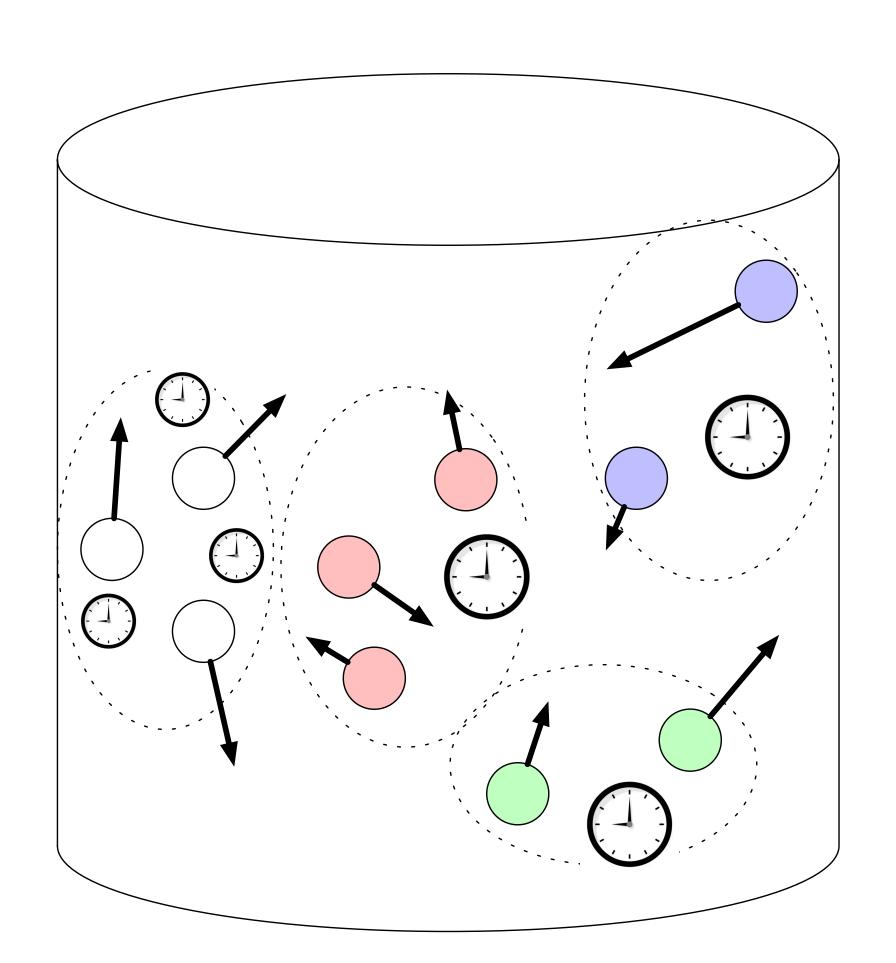
Quantify over all possible schedulings



Move and collide (local interactions)



Causal consistent reversibility

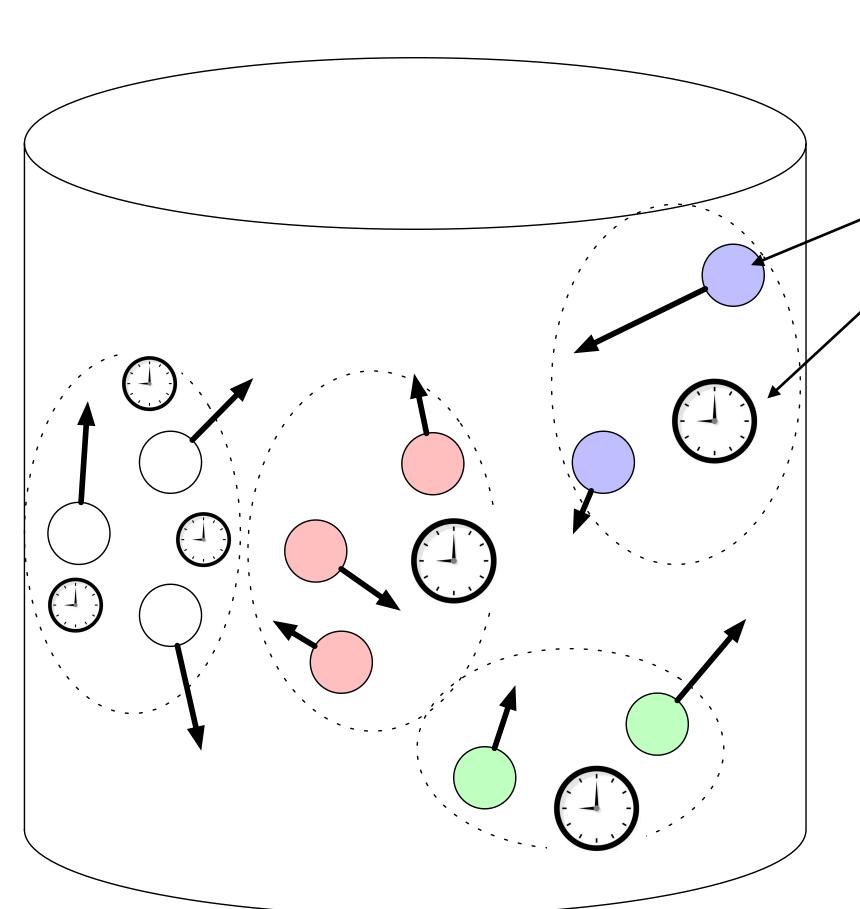


A subsystem may be "backwards", while the rest is "forwards"...

But agents can interact only if they are in compatible space-time

Lamport's clocks (78): causality as abstract time

Causal consistent reversibility



Agent cannot backtrack beyond this time point alone to avoid a paradox...

A subsystem may be "backwards", while the rest is "forwards"...

But agents can interact only if they are in compatible space-time

Lamport's clocks (78): causality as abstract time

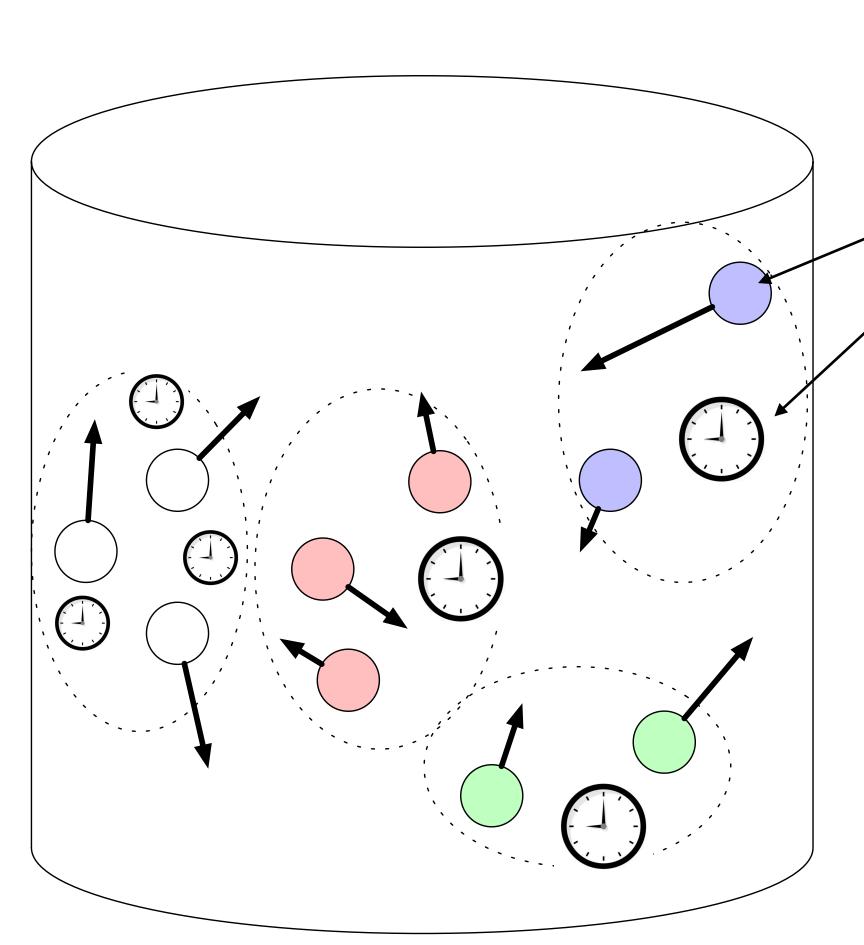
Causal consistent reversibility

Transactional systems

Concurrent debuggers

Counterfactual reasoning

Self assembly



Agent cannot backtrack beyond this time point alone to avoid a paradox...

A subsystem may be "backwards", while the rest is "forwards"...

But agents can interact only if they are in compatible space-time

Lamport's clocks (78): causality as abstract time

Well understood operationally

Pi
$$\bar{a}b.P \mid a(x).Q \rightarrow P \mid Q\{b/x\}$$

Computation is dissipative

Well understood operationally

Computation is
$$ar{a}b.P \mid a(x).Q \to P \mid Q\{b/x\}$$
 dissipative

RPi $m: \bar{a}b.P \mid m': c(x).Q \leftrightarrow (i, \bar{a}b).m: P \mid (i, c[d/x]).m': Q$

Computation is information preserving!

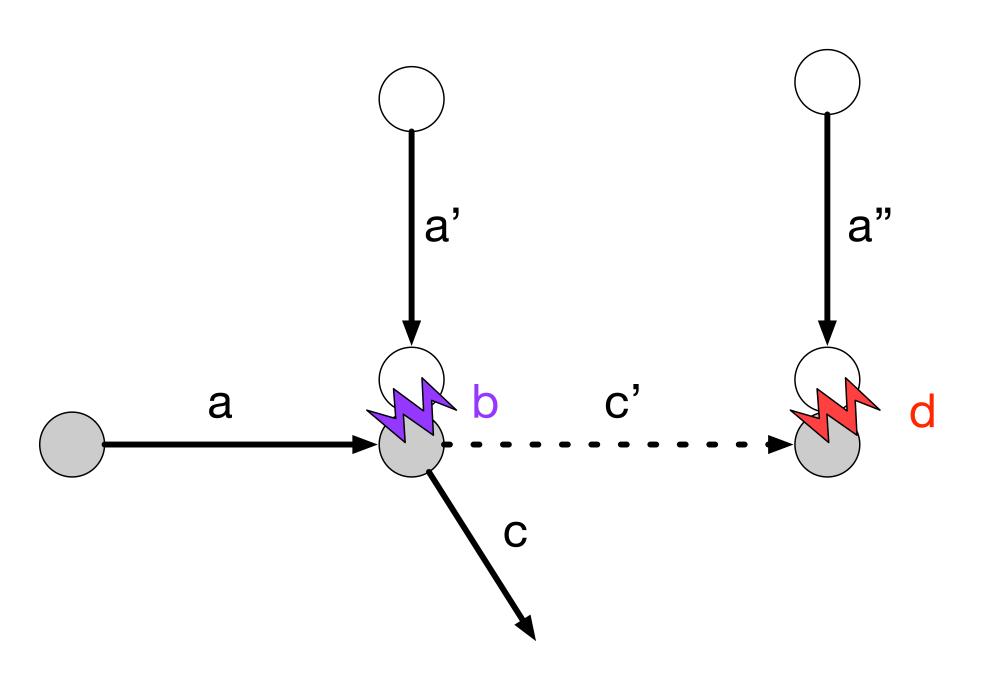
with
$$m'(c) = m(a)$$

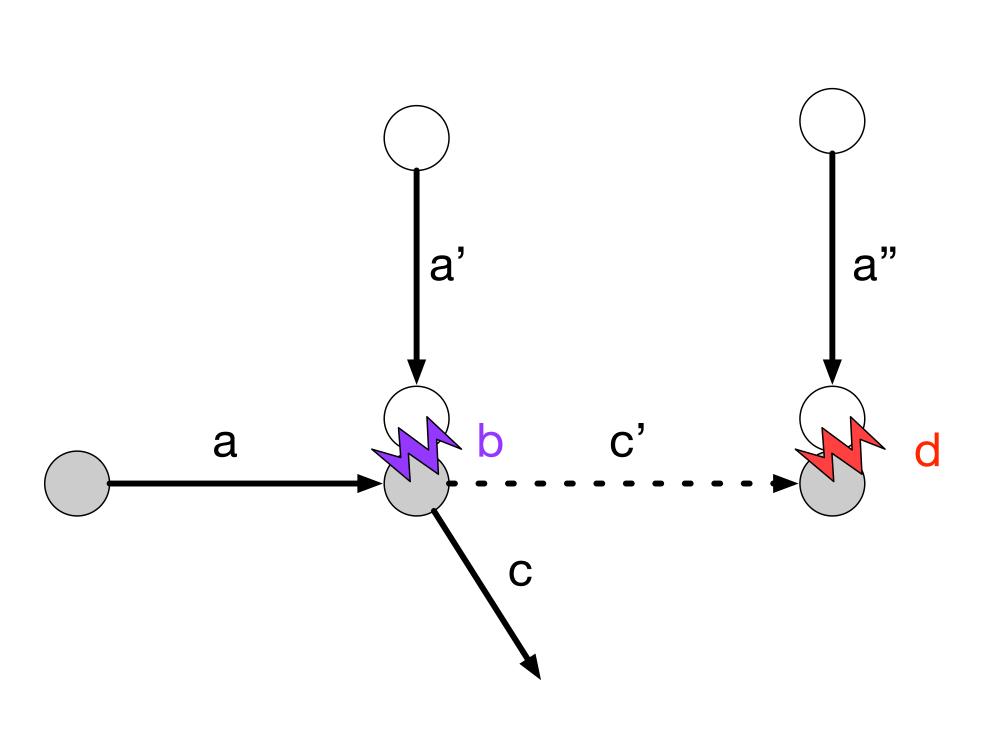
$$m(b) = d$$
 subst. in m applied to b

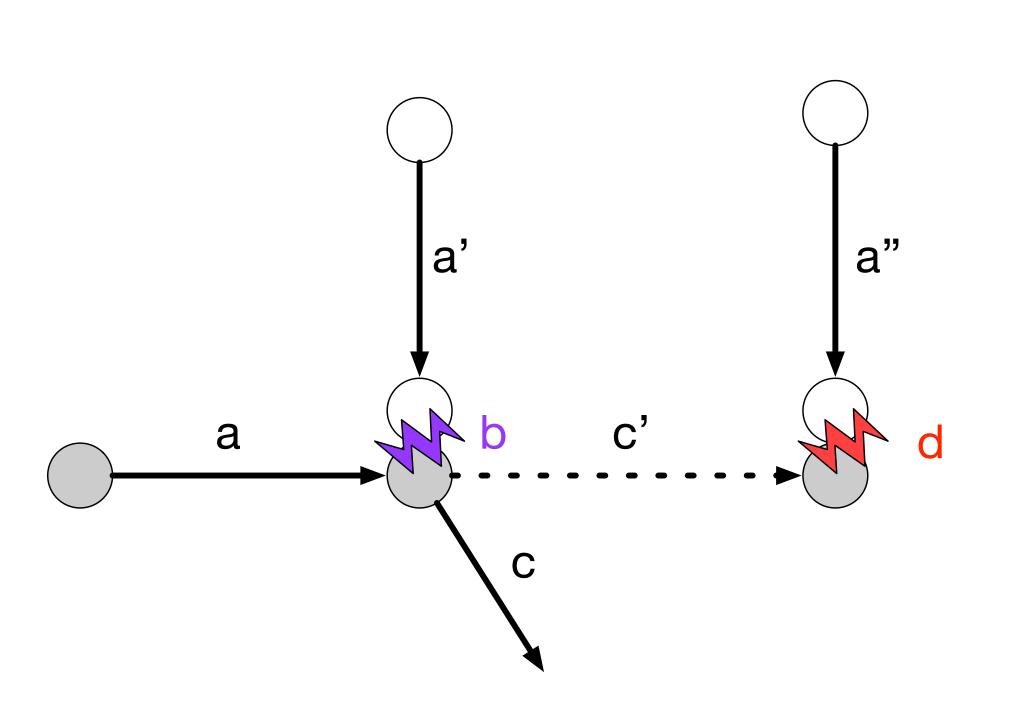
Well understood operationally

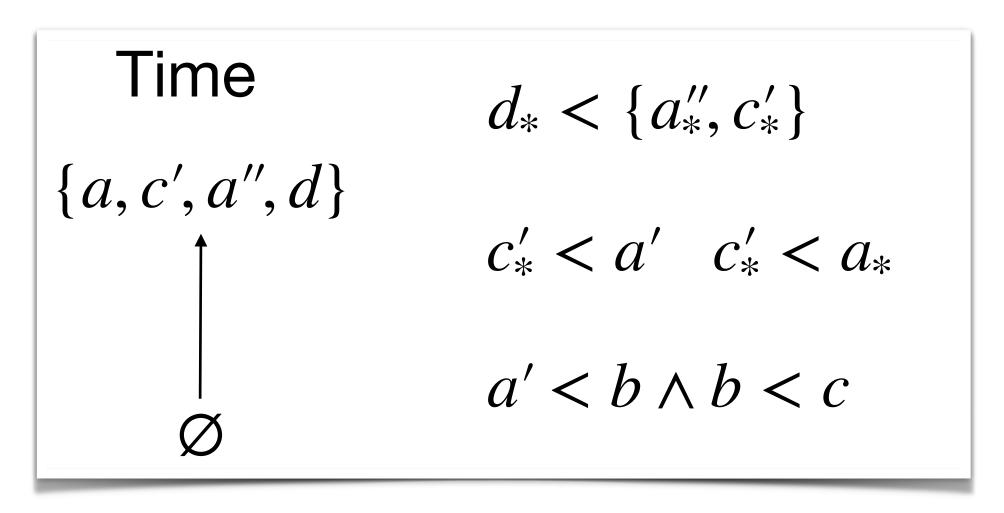
XOR	CNOT
x y z	x y z m
000	000
0 1 1	0 1 1
1 0 1	1010

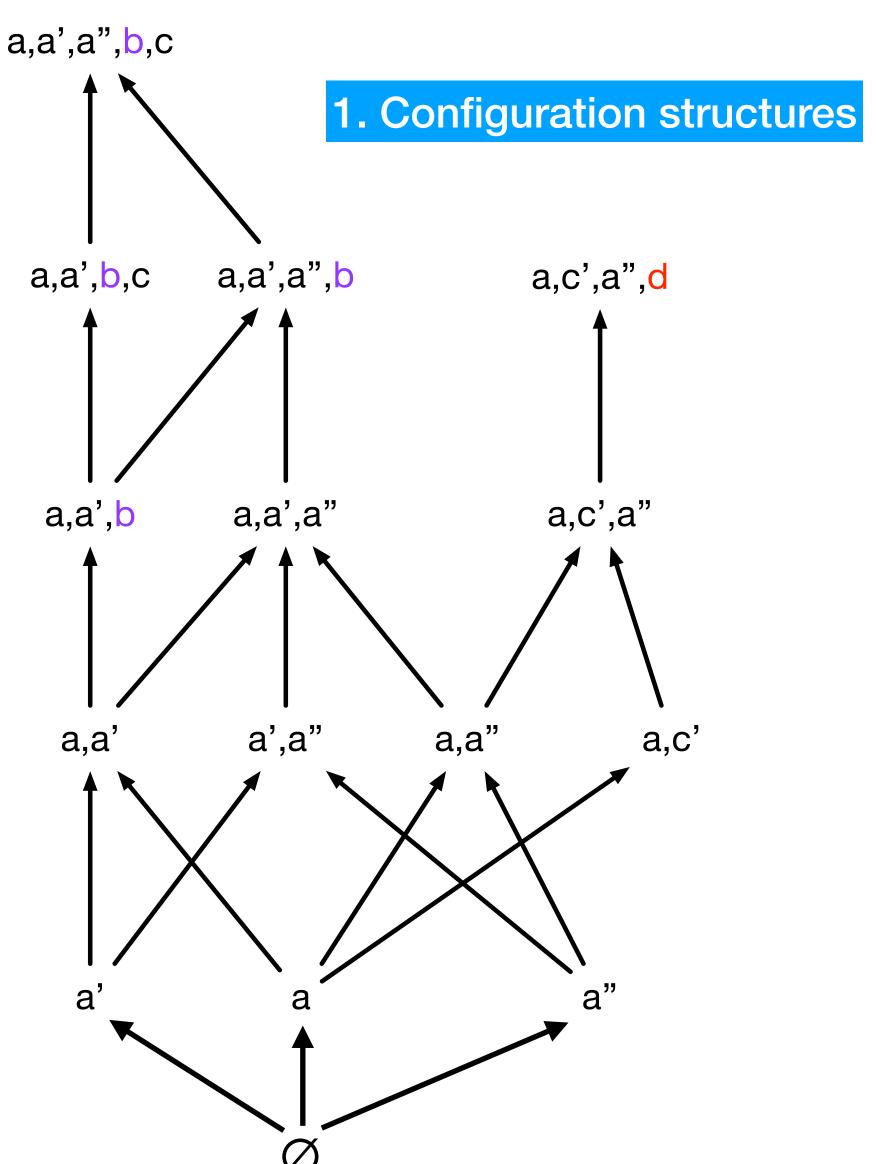
1 1 0 1

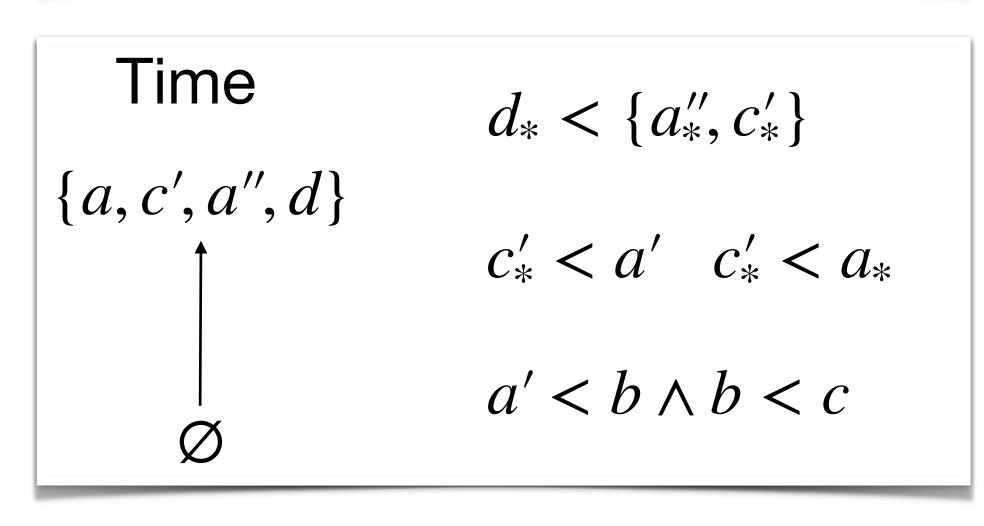


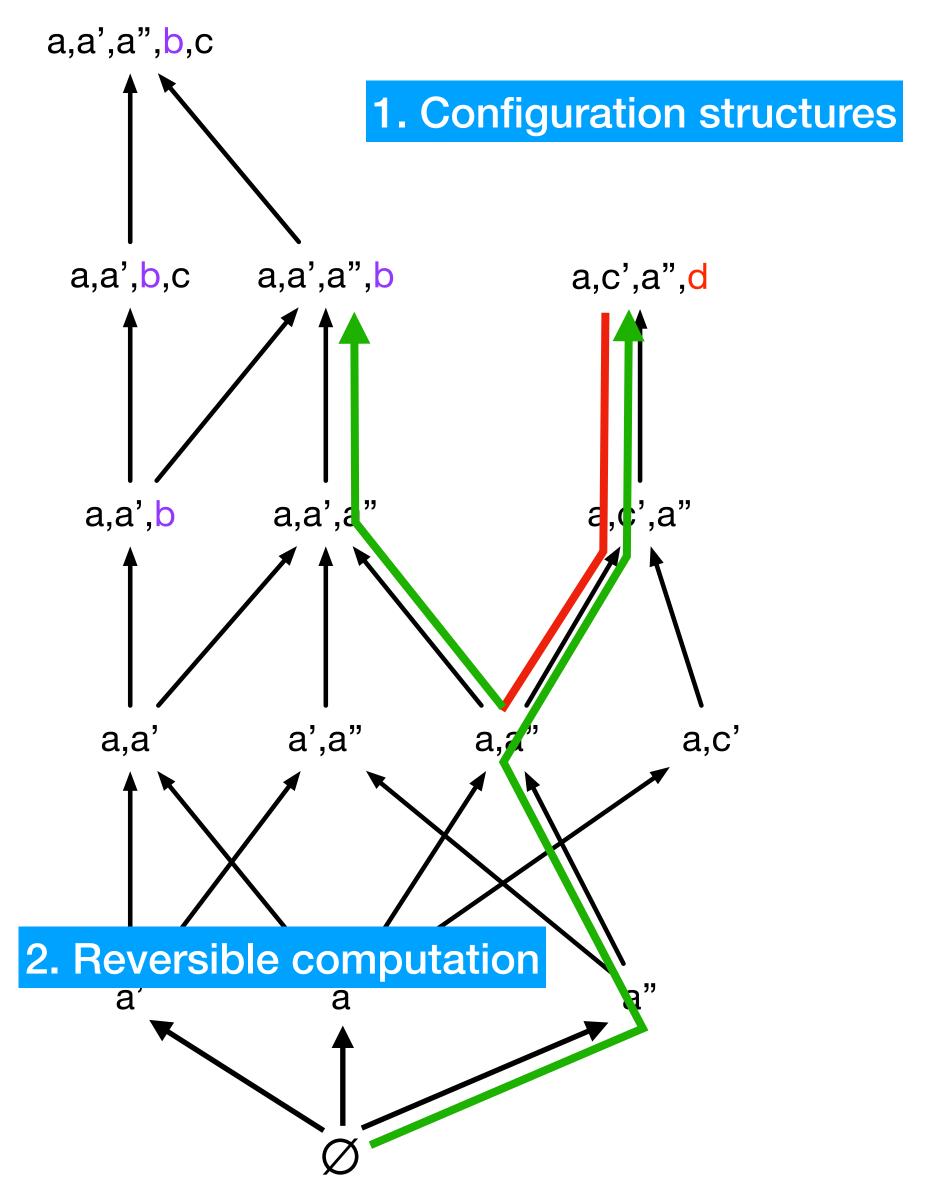


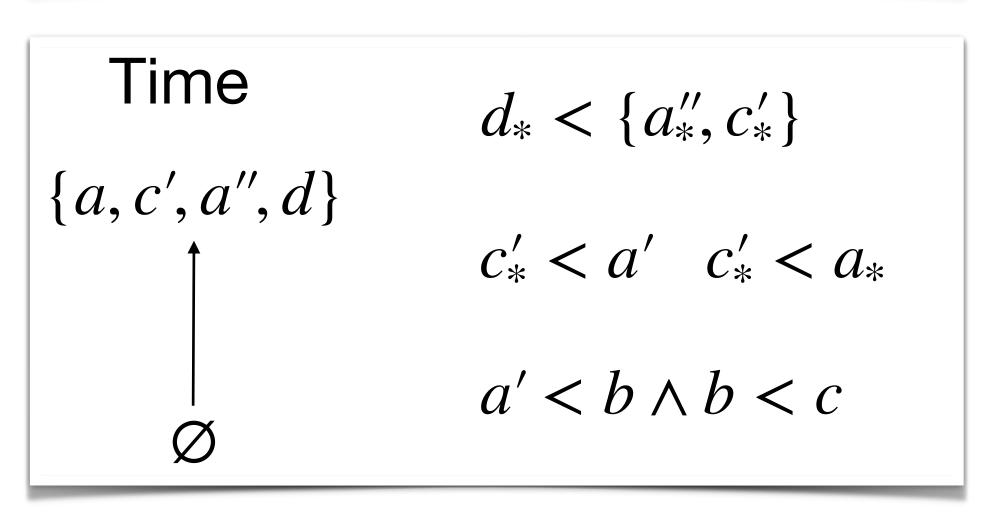


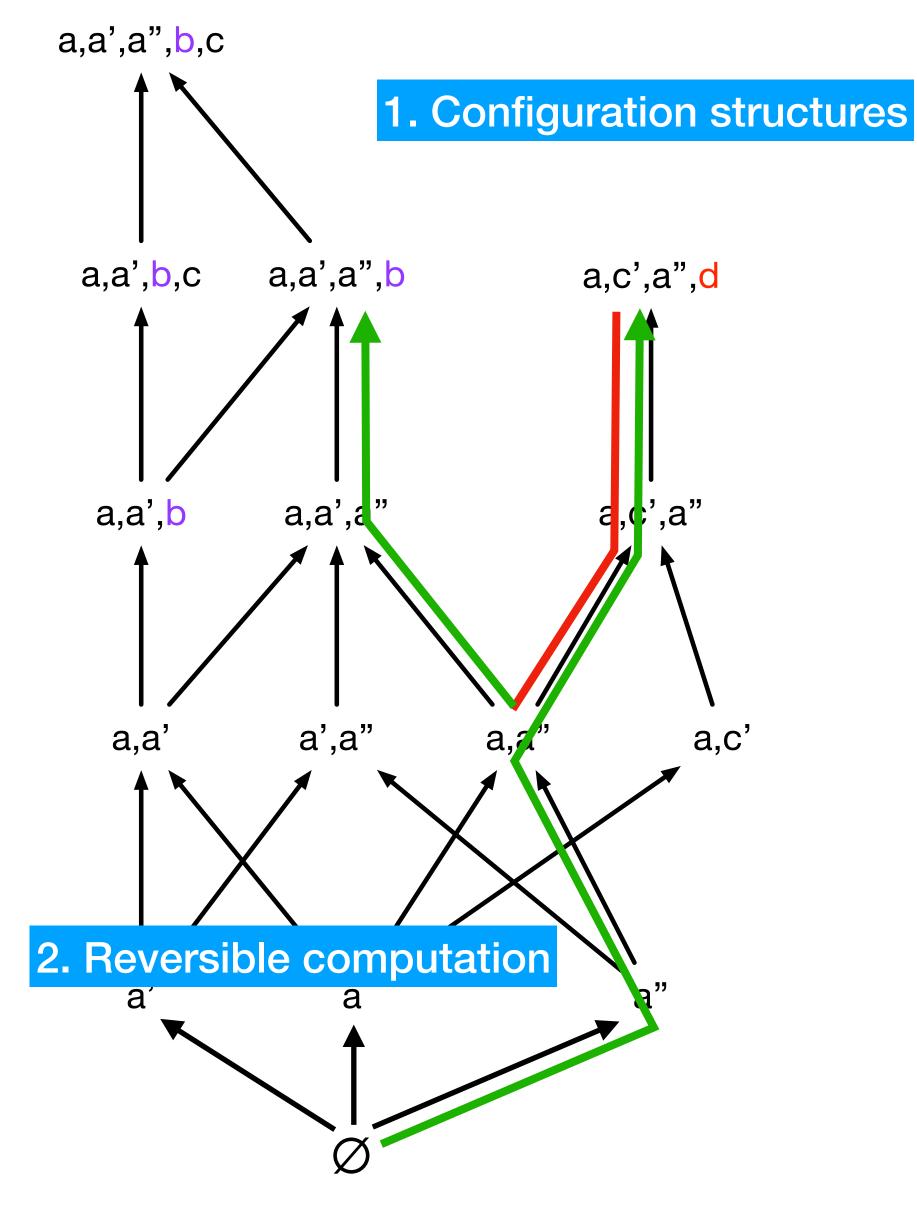


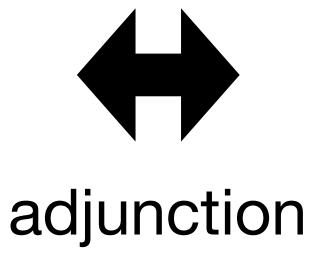




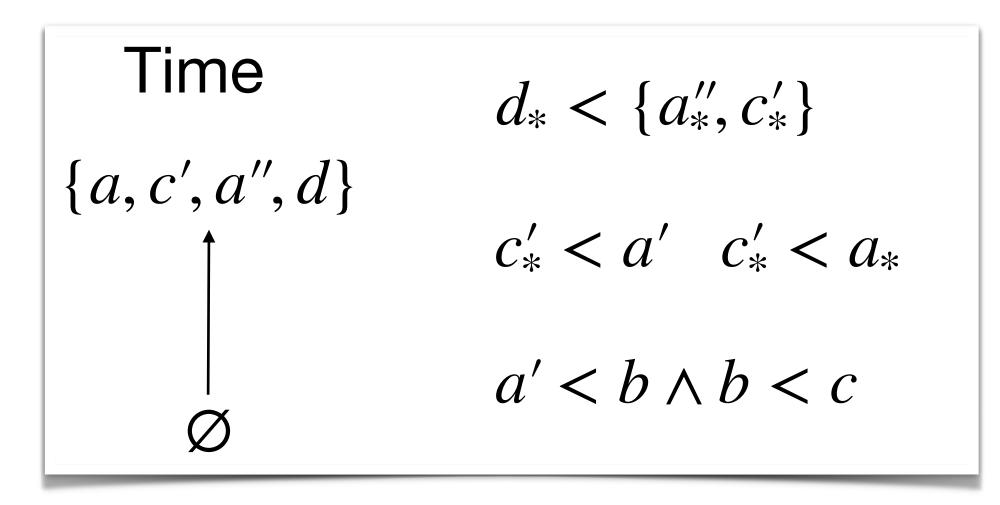








Logical characterisation



3. Prime event structures interpretation

Configuration structure

$$\mathbb{C} = (E, X) \quad X \subseteq \mathcal{P}(E)$$

Partial order

$$\mathbb{C}^{\mathsf{p.o}} = (X, \subseteq) \quad x \subset_{\mathbb{C}} y \text{ iff } \uparrow^{\mathbb{C}} \{x, y\} \neq \emptyset$$

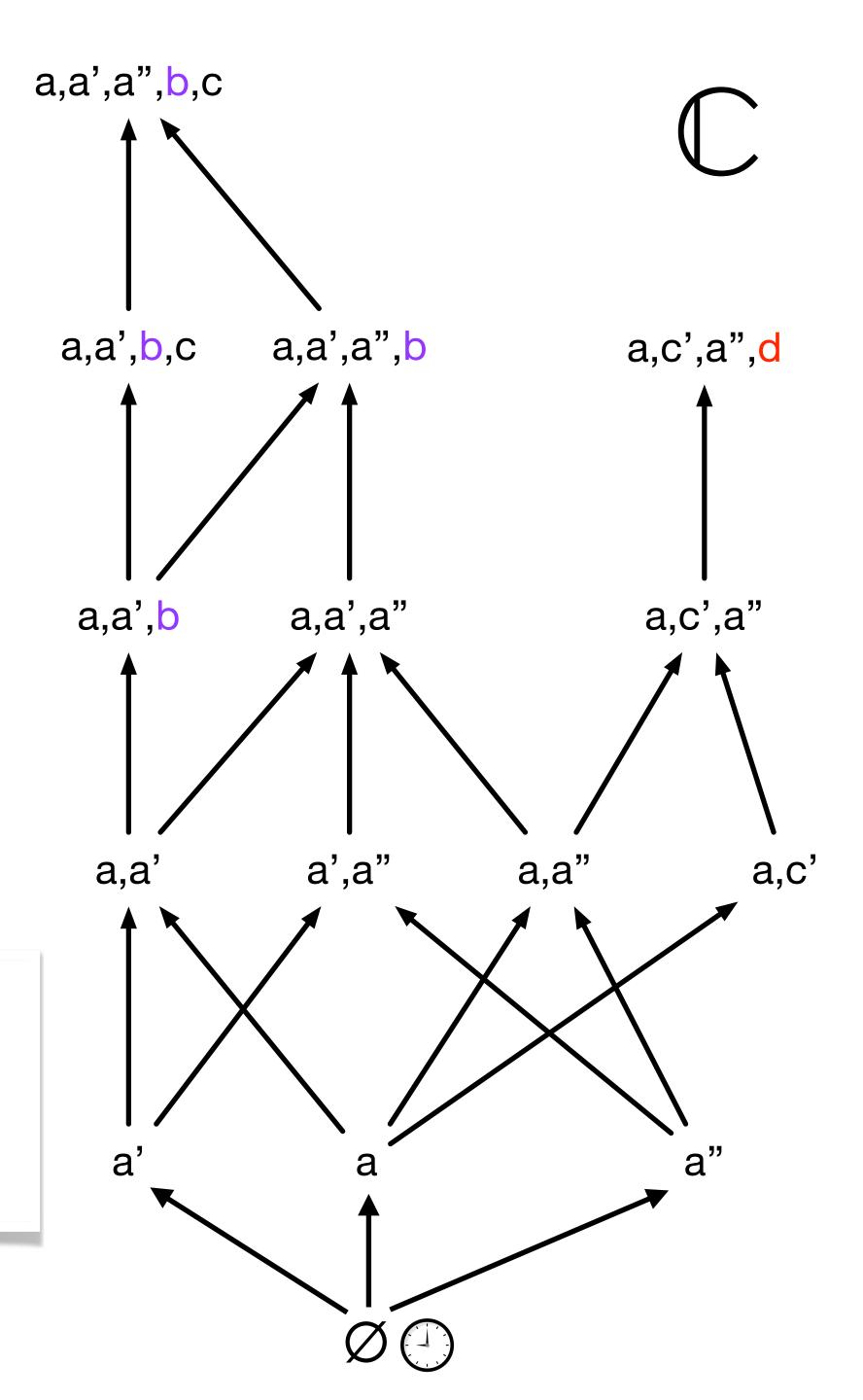
Atomic

© is rooted and connected

Definition 2.3 Let $\mathbb{C} \in \mathcal{C}_E$. For all finite $x \in \mathbb{C}$, we define the *residual* of \mathbb{C} *after* x:

$$x \cdot \mathbb{C} := \langle E, \{ z \in \mathcal{P}(E) \mid \exists y \in \uparrow^{\mathbb{C}} \{x\} : z = y \setminus x \} \rangle$$

where $y \setminus x := \{a \in y \mid a \notin x\}$ is the classical set difference.



Configuration structure

$$\mathbb{C} = (E, X) \quad X \subseteq \mathcal{P}(E)$$

Partial order

$$\mathbb{C}^{\mathsf{p.o}} = (X, \subseteq) \quad x \subset \mathbb{C}^{\mathsf{y}} \text{ iff } \uparrow^{\mathbb{C}} \{x, y\} \neq \emptyset$$

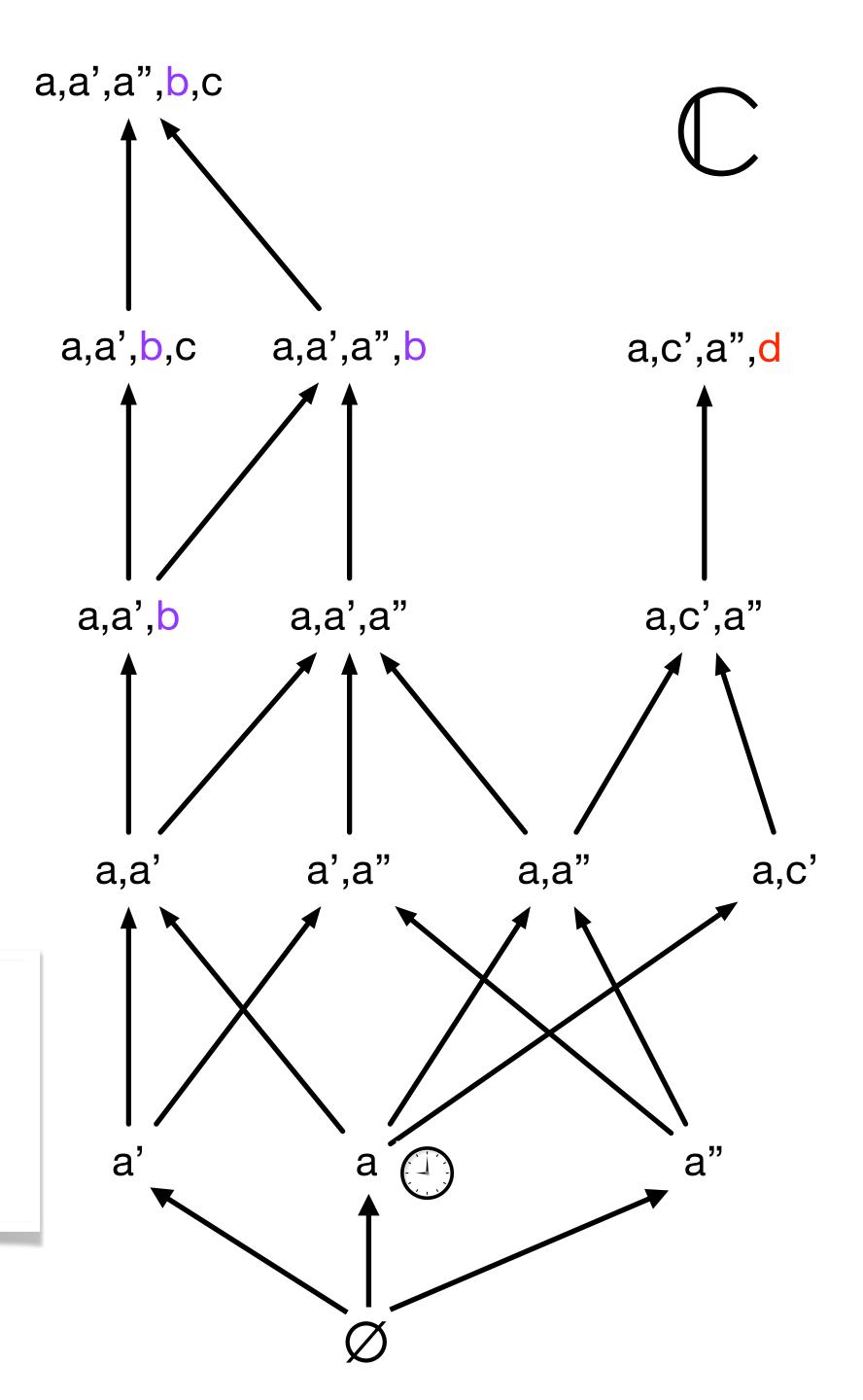
Atomic

C is rooted and connected

Definition 2.3 Let $\mathbb{C} \in \mathcal{C}_E$. For all finite $x \in \mathbb{C}$, we define the residual of \mathbb{C} after x:

$$x \cdot \mathbb{C} \coloneqq \langle E, \{z \in \mathcal{P}(E) \mid \exists y \in \uparrow^{\mathbb{C}} \{x\} : z = y \setminus x\} \rangle$$

where $y \setminus x := \{a \in y \mid a \not\in x\}$ is the classical set difference.



Configuration structure

$$\mathbb{C} = (E, X) \quad X \subseteq \mathcal{P}(E)$$

Partial order

$$\mathbb{C}^{\mathsf{p.o}} = (X, \subseteq) \quad x \subset \mathbb{C}^{\mathsf{y}} \text{ iff } \uparrow^{\mathbb{C}} \{x, y\} \neq \emptyset$$

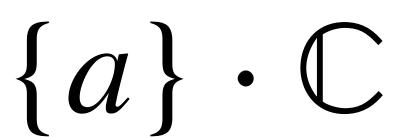
Atomic

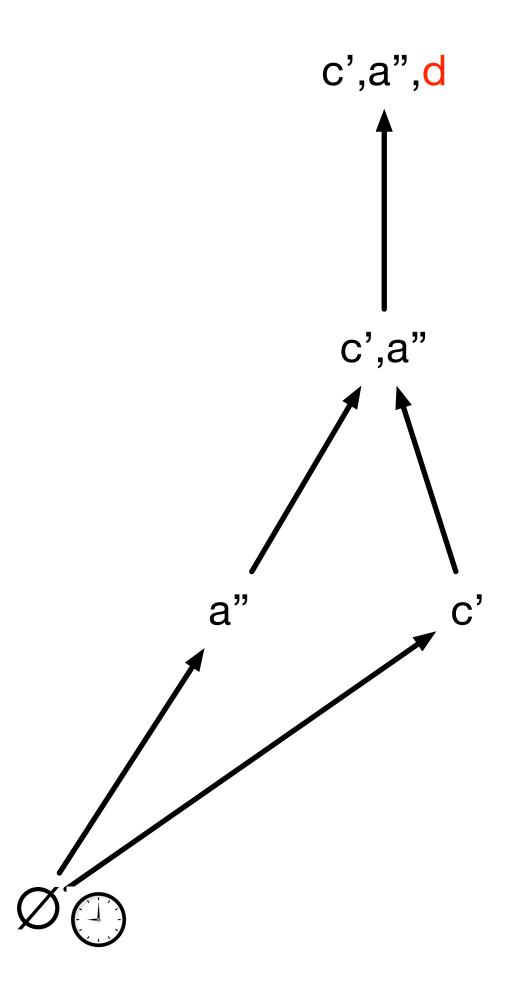
C is rooted and connected

Definition 2.3 Let $\mathbb{C} \in \mathcal{C}_E$. For all finite $x \in \mathbb{C}$, we define the residual of \mathbb{C} after x:

$$x \cdot \mathbb{C} \coloneqq \langle E, \{z \in \mathcal{P}(E) \mid \exists y \in \uparrow^{\mathbb{C}} \{x\} : z = y \setminus x\} \rangle$$

where $y \setminus x := \{a \in y \mid a \notin x\}$ is the classical set difference.





Forward computation



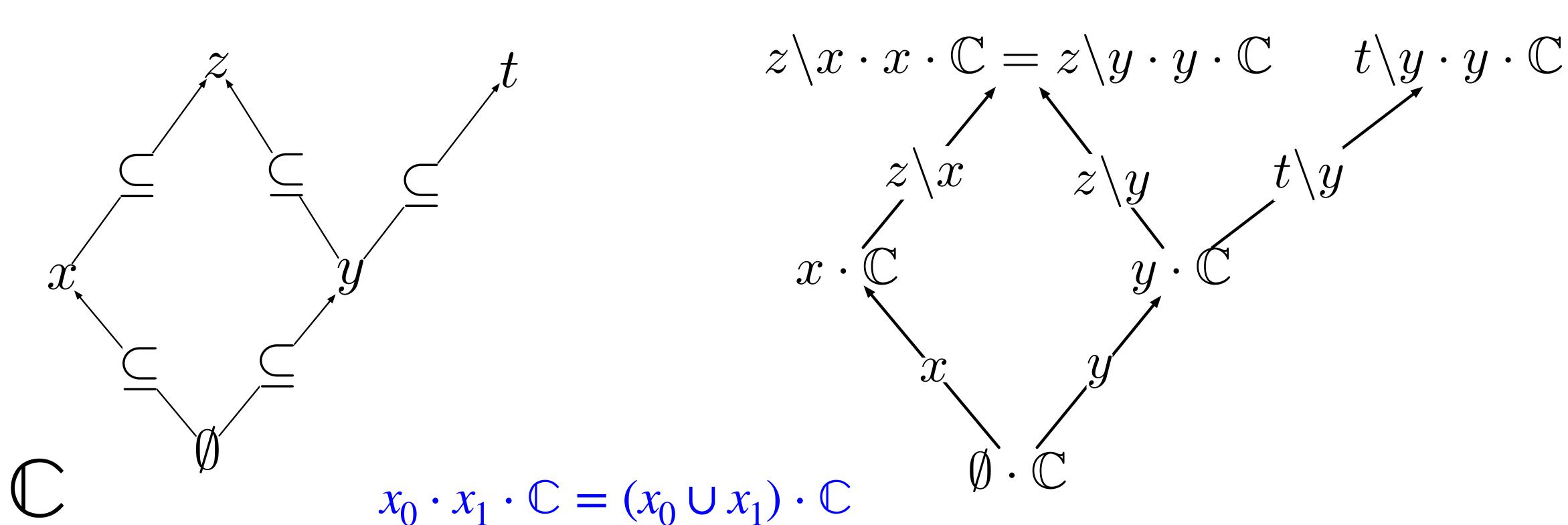
 $\varnothing\cdot\mathbb{C}=\mathbb{C}$

+ residuation

Labelled transition system as a monoid action

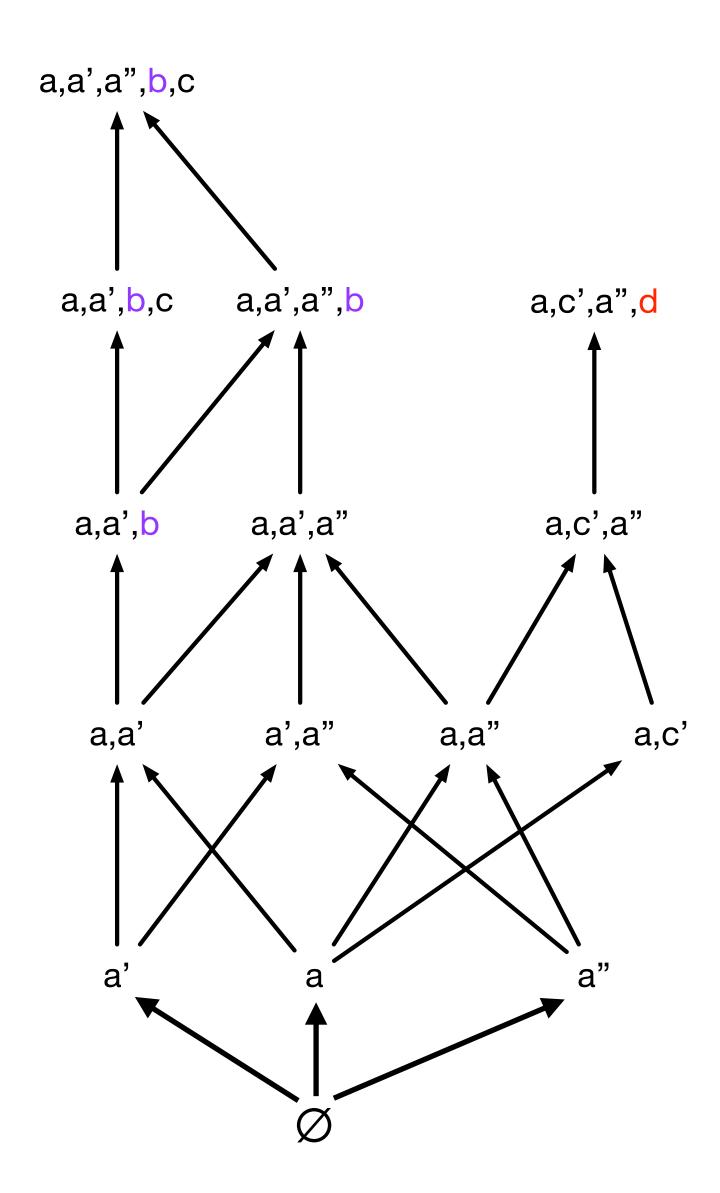
Forward computation

Possible futures are partially ordered

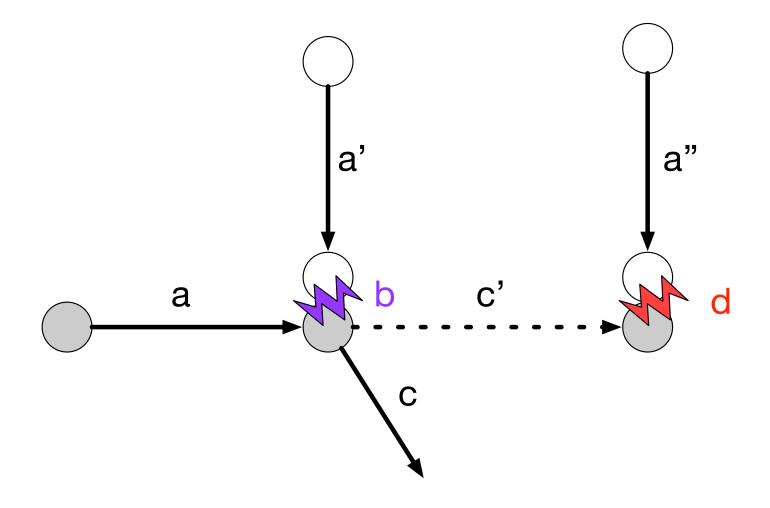


+ residuation

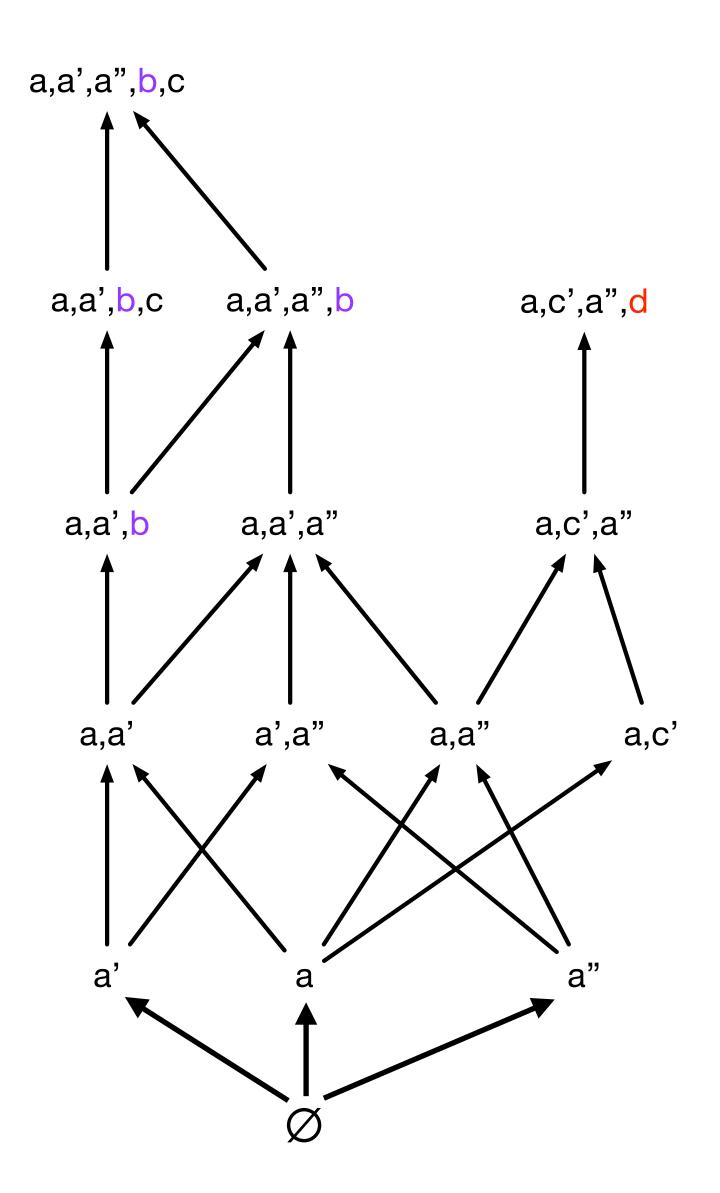
Prime Event Structures



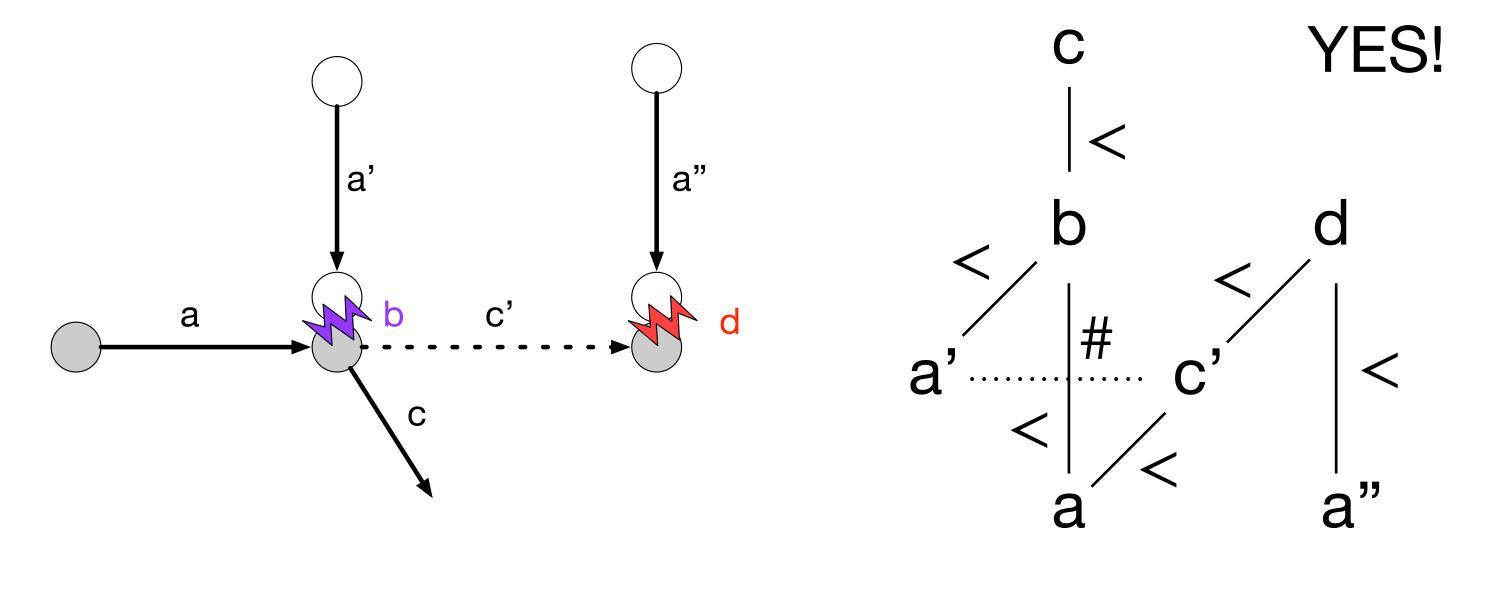
Is this structure engendered by a causality and conflict relation amongst events?



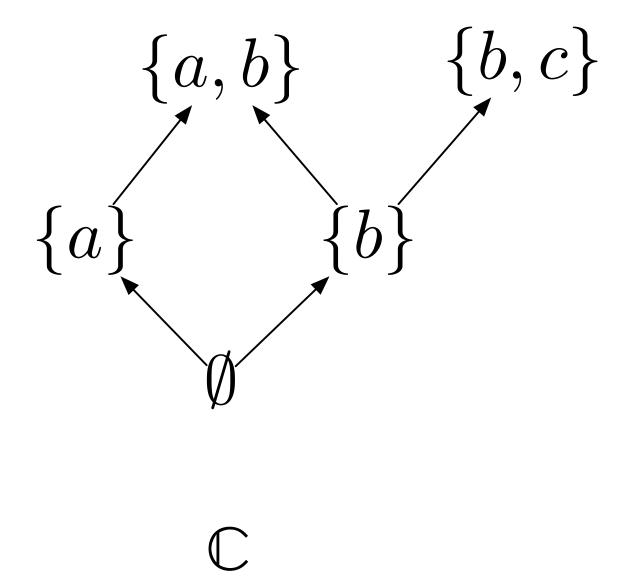
Prime Event Structures



Is this structure engendered by a causality and conflict relation amongst events?

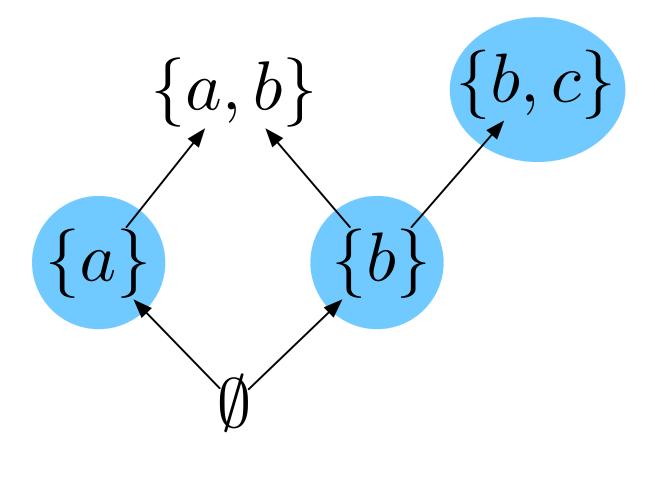


... but it is not true in general...



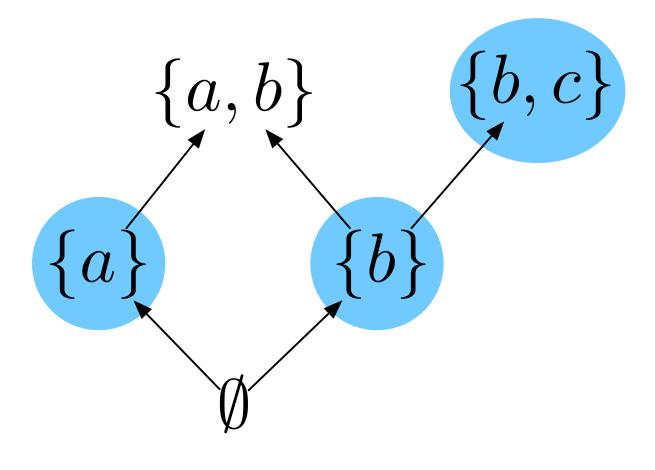
Prime elements:

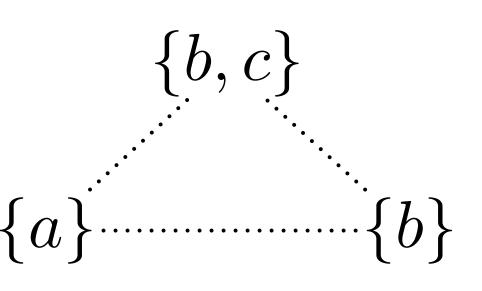
$$p \in \Pr(\mathbb{C}) : p \sqsubseteq \bigsqcup X \implies p \sqsubseteq x \in X$$



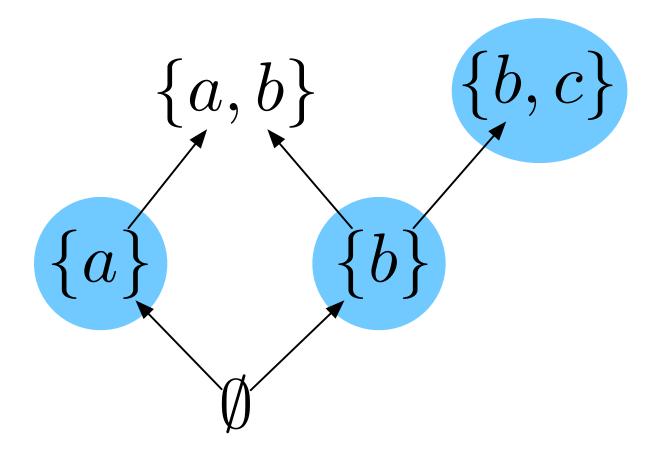
 \mathbb{C}

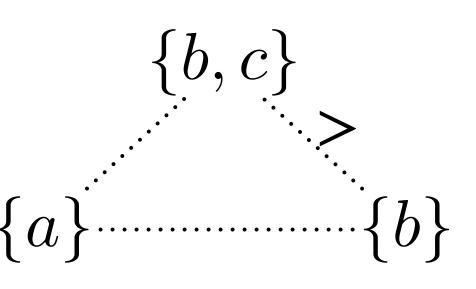
$$p \in \Pr(\mathbb{C}) : p \sqsubseteq | X \implies p \sqsubseteq x \in X$$



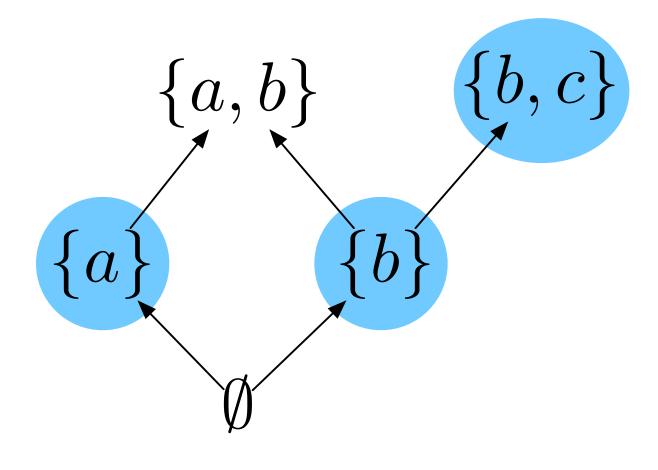


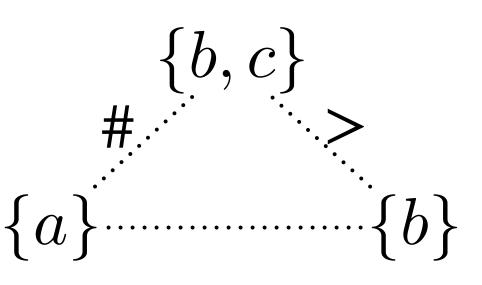
$$p \in \Pr(\mathbb{C}) : p \sqsubseteq | X \implies p \sqsubseteq x \in X$$



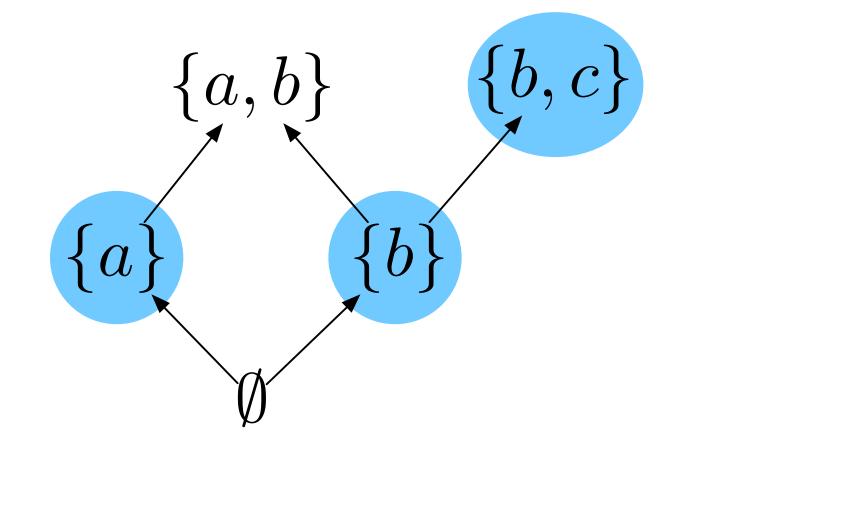


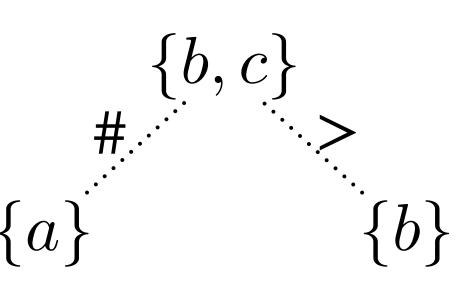
$$p \in \Pr(\mathbb{C}) : p \sqsubseteq | X \implies p \sqsubseteq x \in X$$





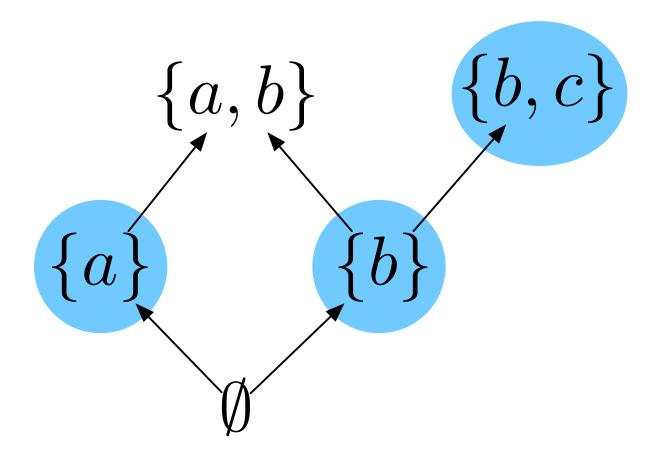
$$p \in \Pr(\mathbb{C}) : p \sqsubseteq | X \implies p \sqsubseteq x \in X$$





Prime elements:

$$p \in \Pr(\mathbb{C}) : p \sqsubseteq \bigsqcup X \implies p \sqsubseteq x \in X$$



$$\{b,c\}$$

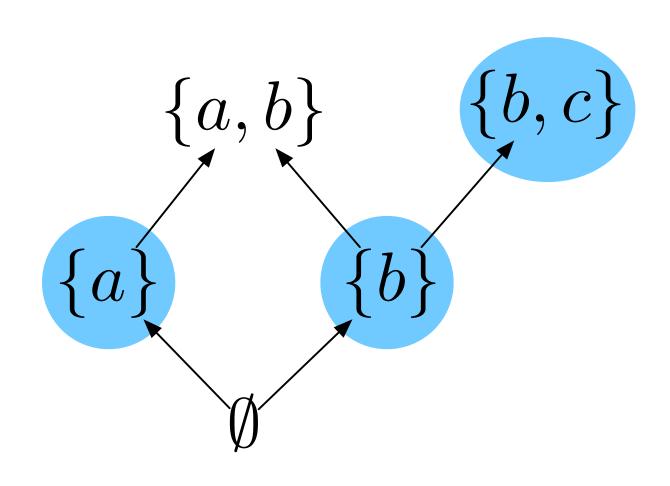
$$\#...$$

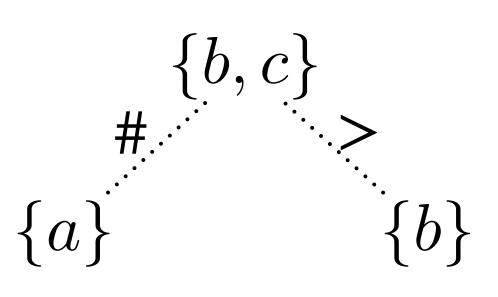
$$\{a\}$$

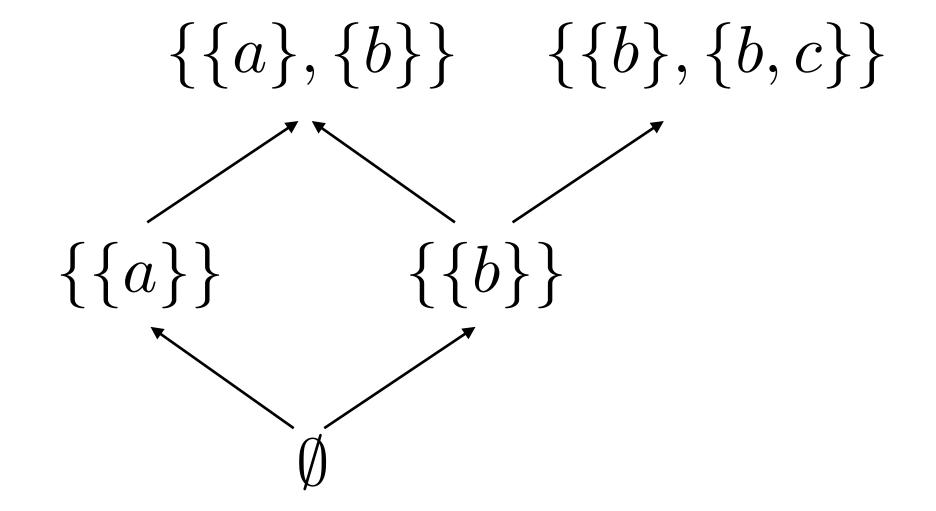
$$\mathbb{E} = (\Pr(\mathbb{C}), <, \#)$$

Prime elements:

$$p \in \Pr(\mathbb{C}) : p \sqsubseteq \bigsqcup X \implies p \sqsubseteq x \in X$$



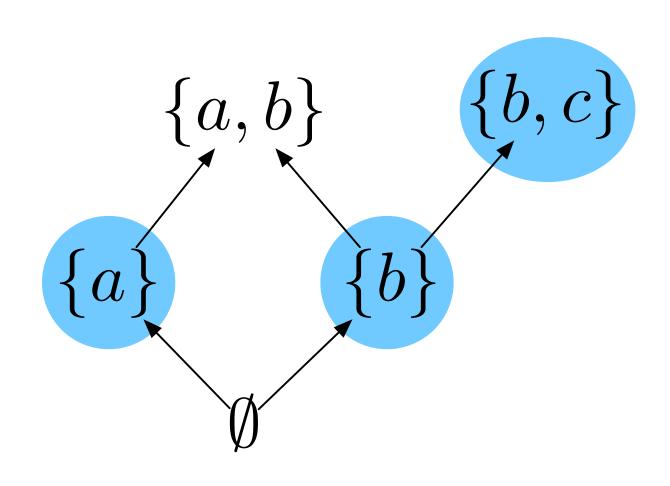


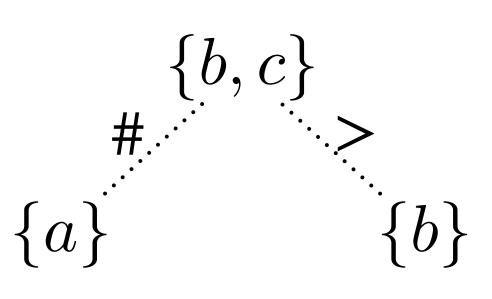


$$\mathbb{E} = (\Pr(\mathbb{C}), <, \#)$$

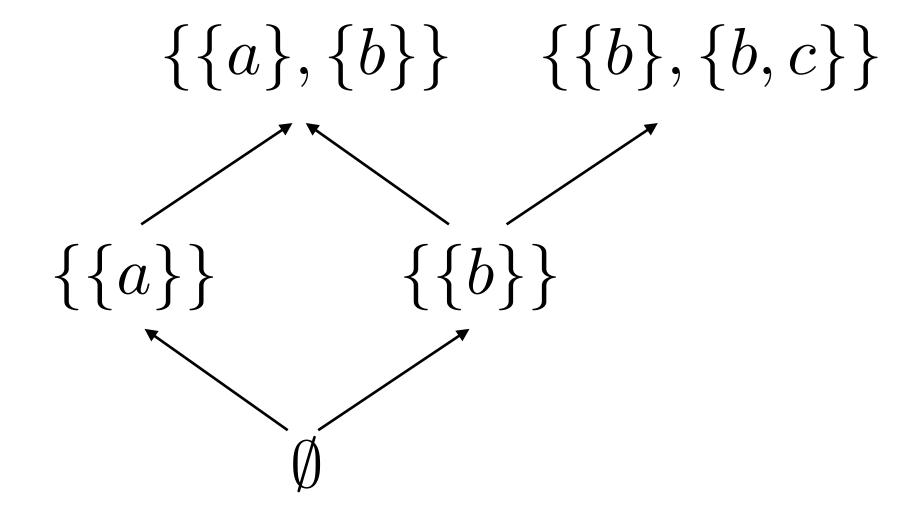
Prime elements:

$$p \in \Pr(\mathbb{C}) : p \sqsubseteq \bigsqcup X \implies p \sqsubseteq x \in X$$





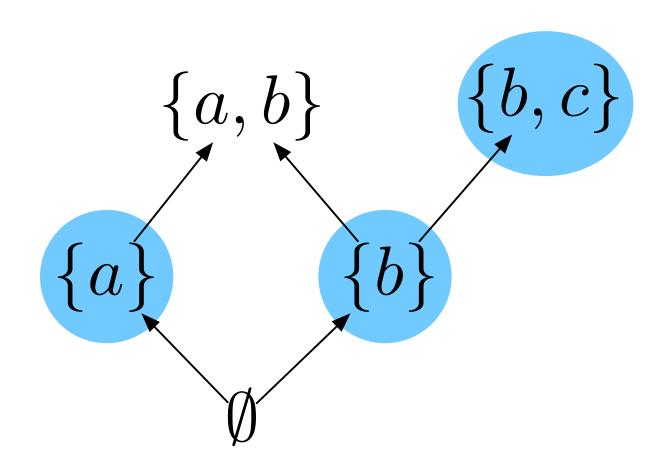
$$\mathbb{E} = (\Pr(\mathbb{C}), <, \#)$$



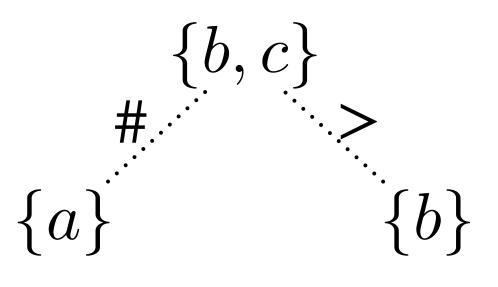
$$\mathbb{C}' = \mathsf{Conf}(\mathbb{E})$$

Prime elements:

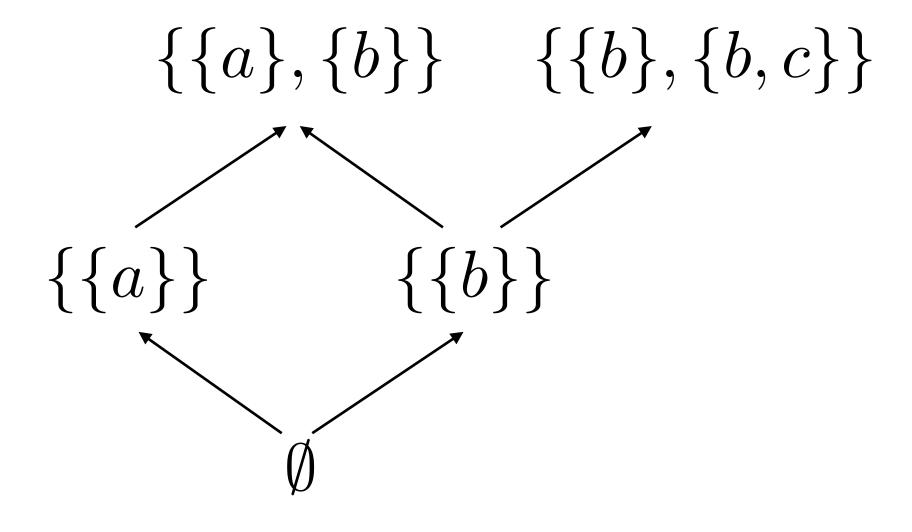
$$p \in \Pr(\mathbb{C}) : p \sqsubseteq \bigsqcup X \implies p \sqsubseteq x \in X$$



prime algebraic & coherent



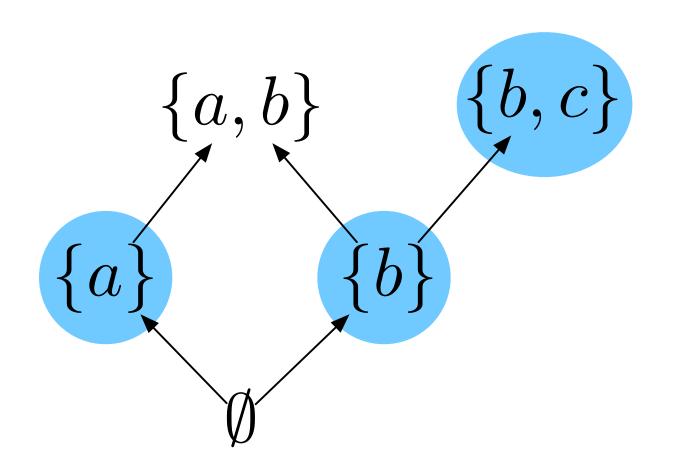
$$\mathbb{E} = (\Pr(\mathbb{C}), <, \#)$$



 $\mathbb{C}' = \mathsf{Conf}(\mathbb{E})$

Prime elements:

$$p \in \Pr(\mathbb{C}) : p \sqsubseteq \bigsqcup X \implies p \sqsubseteq x \in X$$



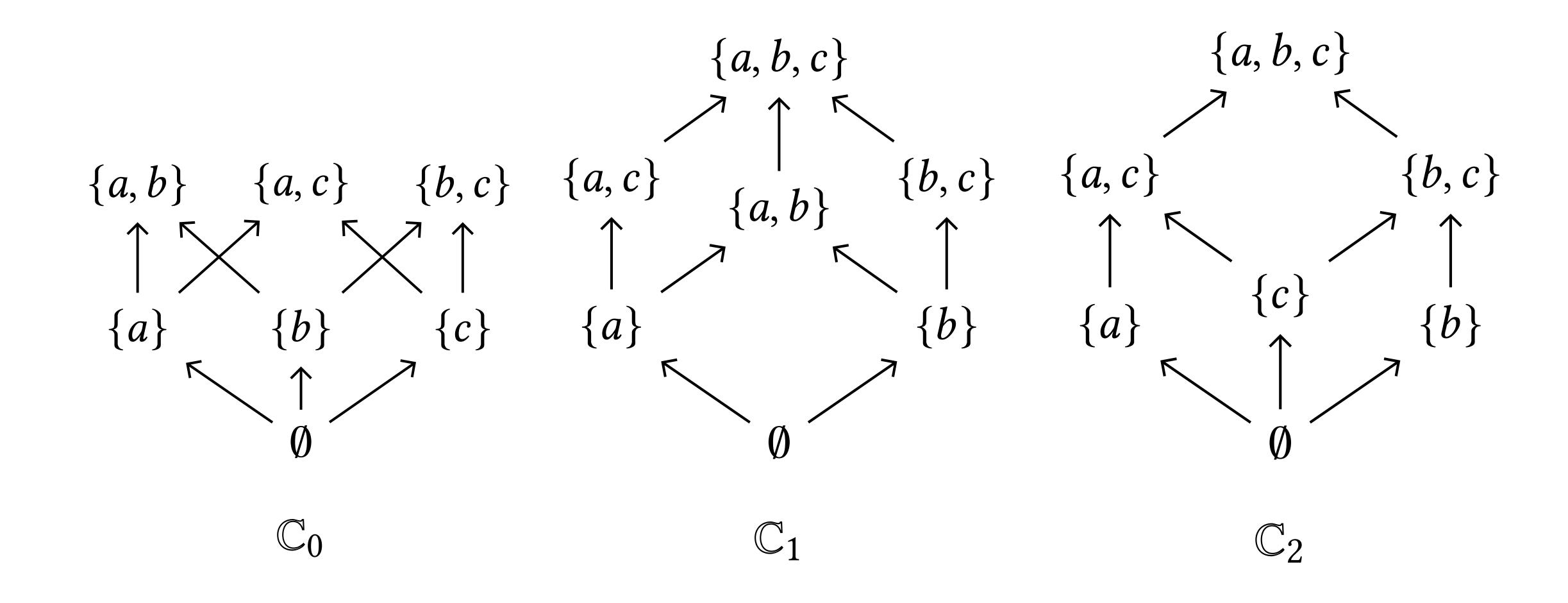
 $\{\{a\},\{b\}\}\}$ $\{\{b\},\{b,c\}\}$

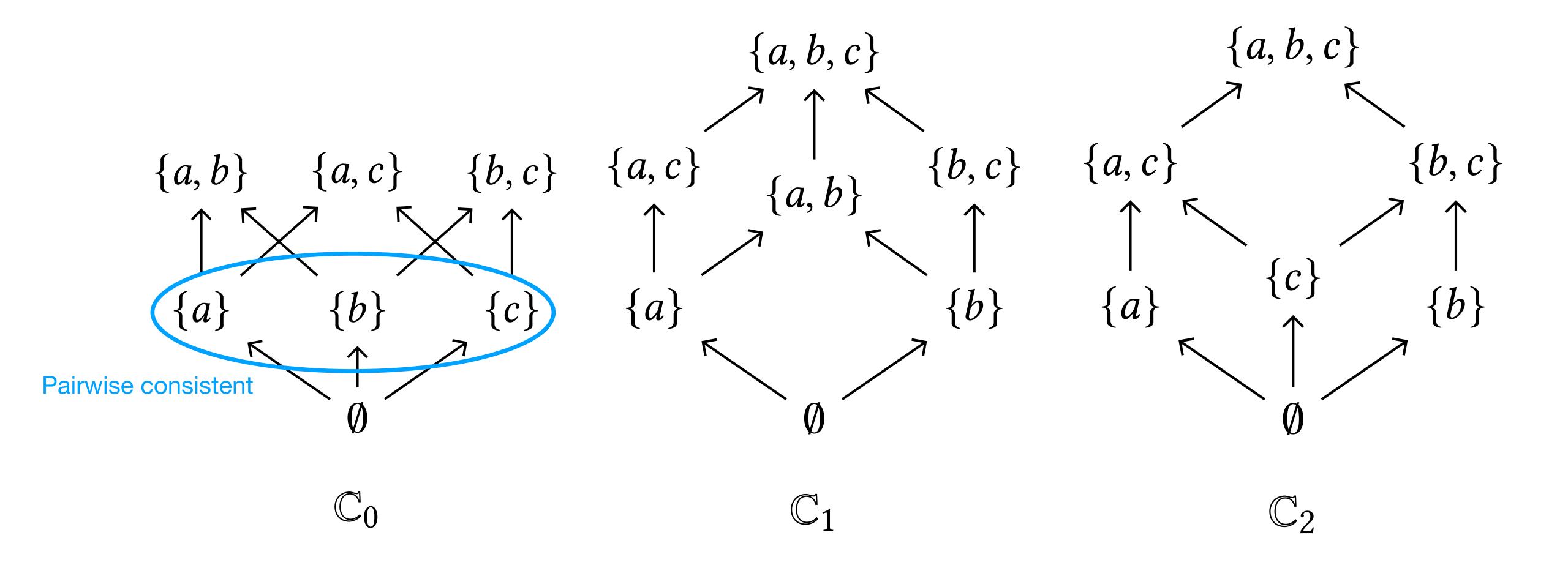
prime algebraic & coherent

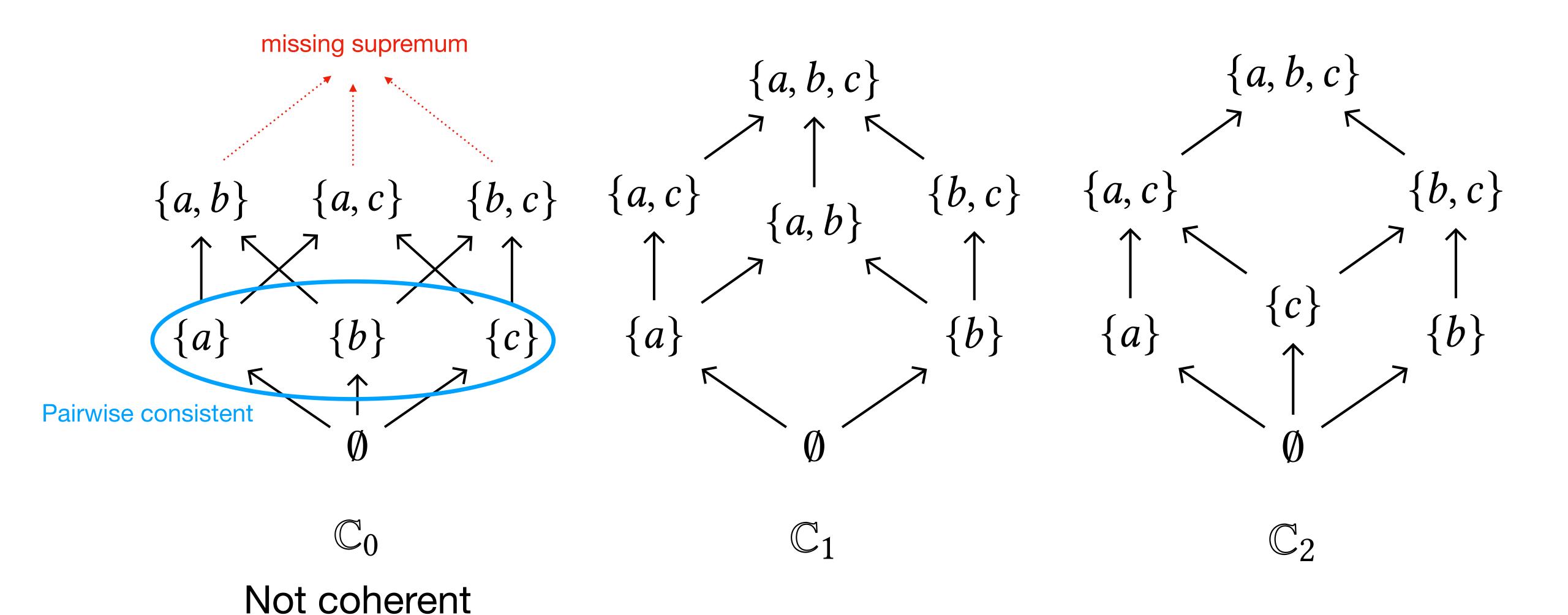
$$\mathbb{C} \overset{\text{\& coherent}}{=} \mathbb{E} = (\Pr(\mathbb{C}), <, \#)$$

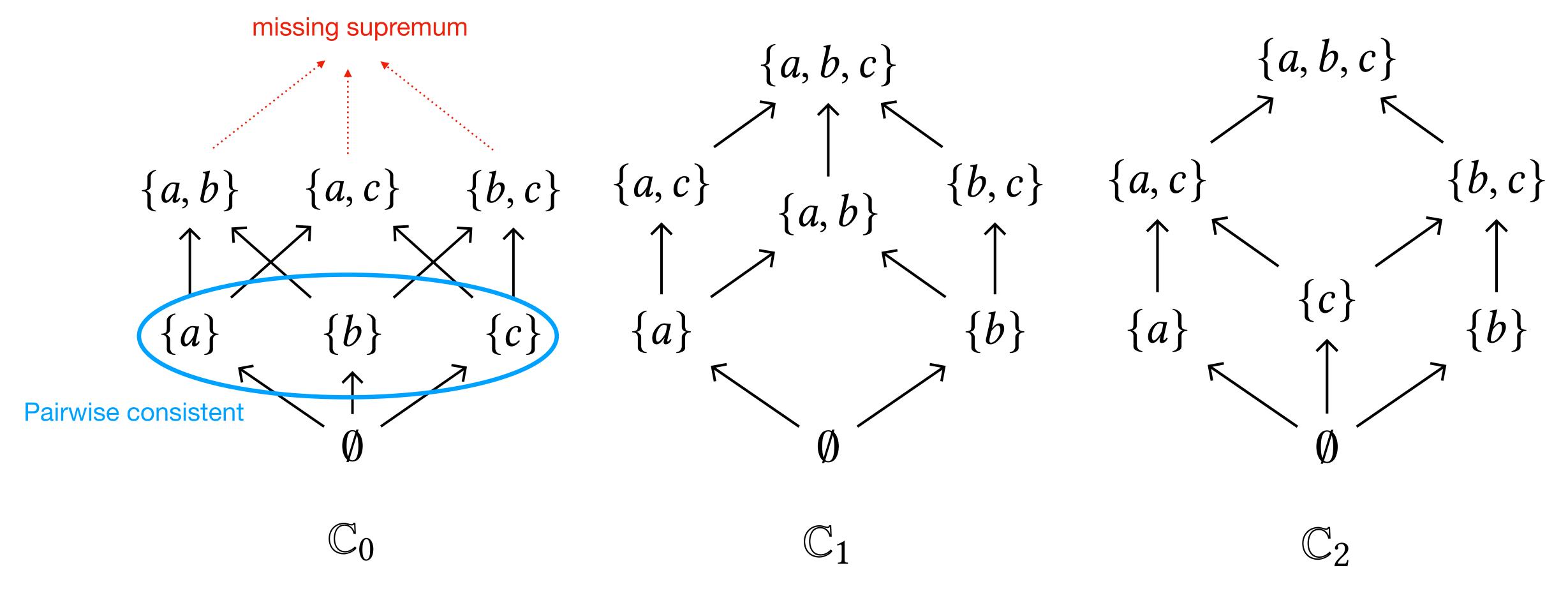
$$\mathbb{C}' = \mathsf{Conf}(\mathbb{E})$$

$$\mathbb{C}' = \mathsf{Conf}(\mathbb{E})$$



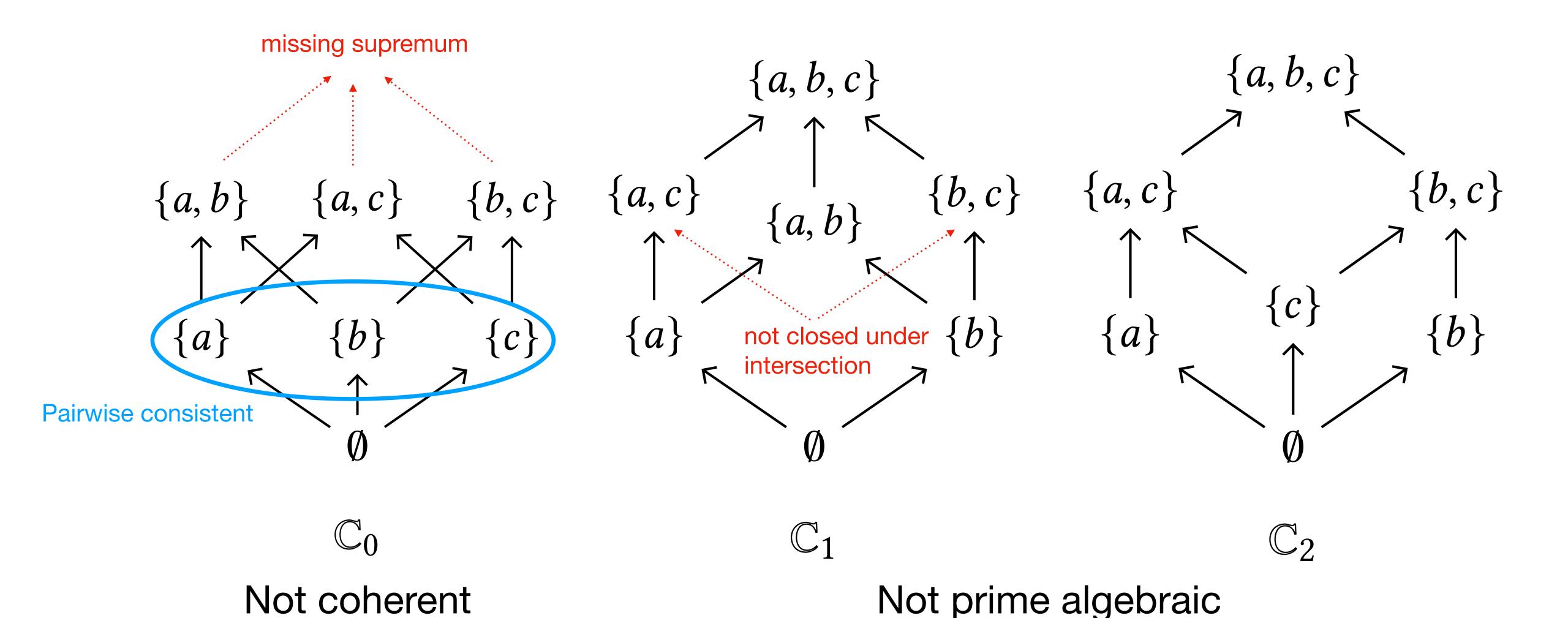


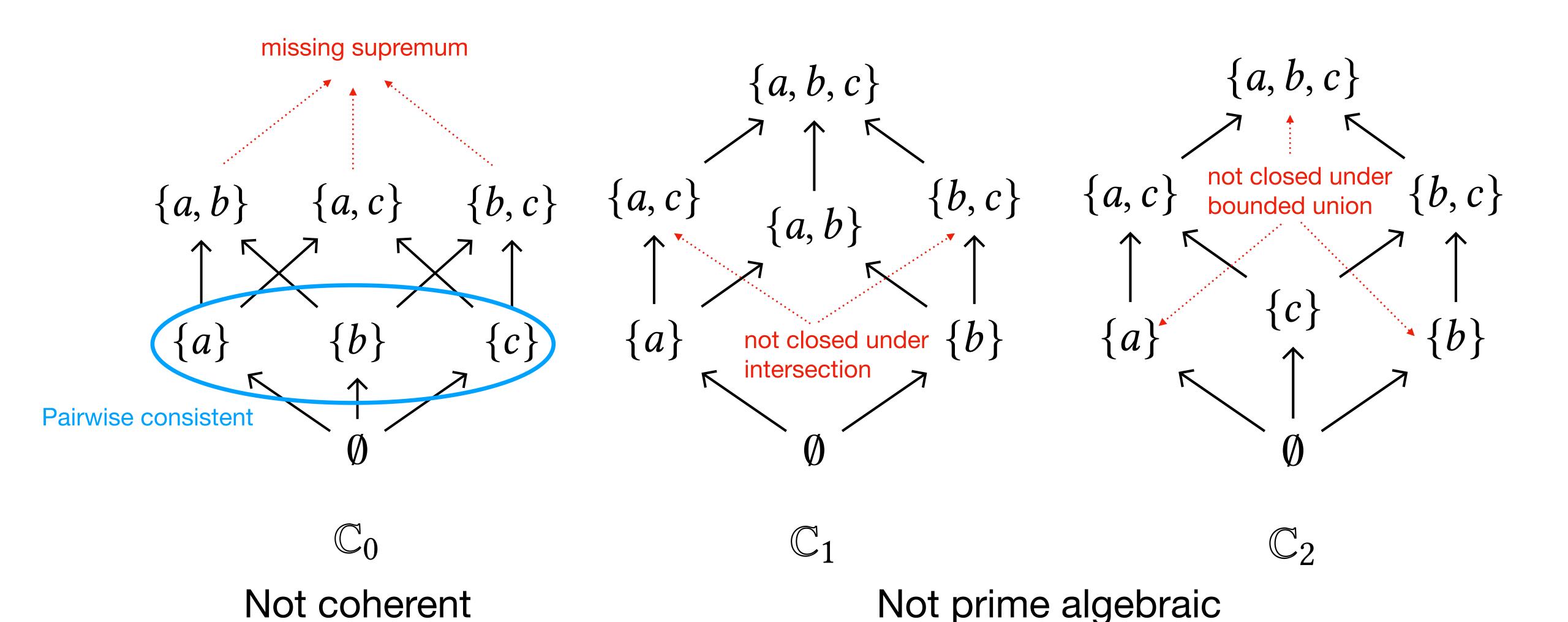




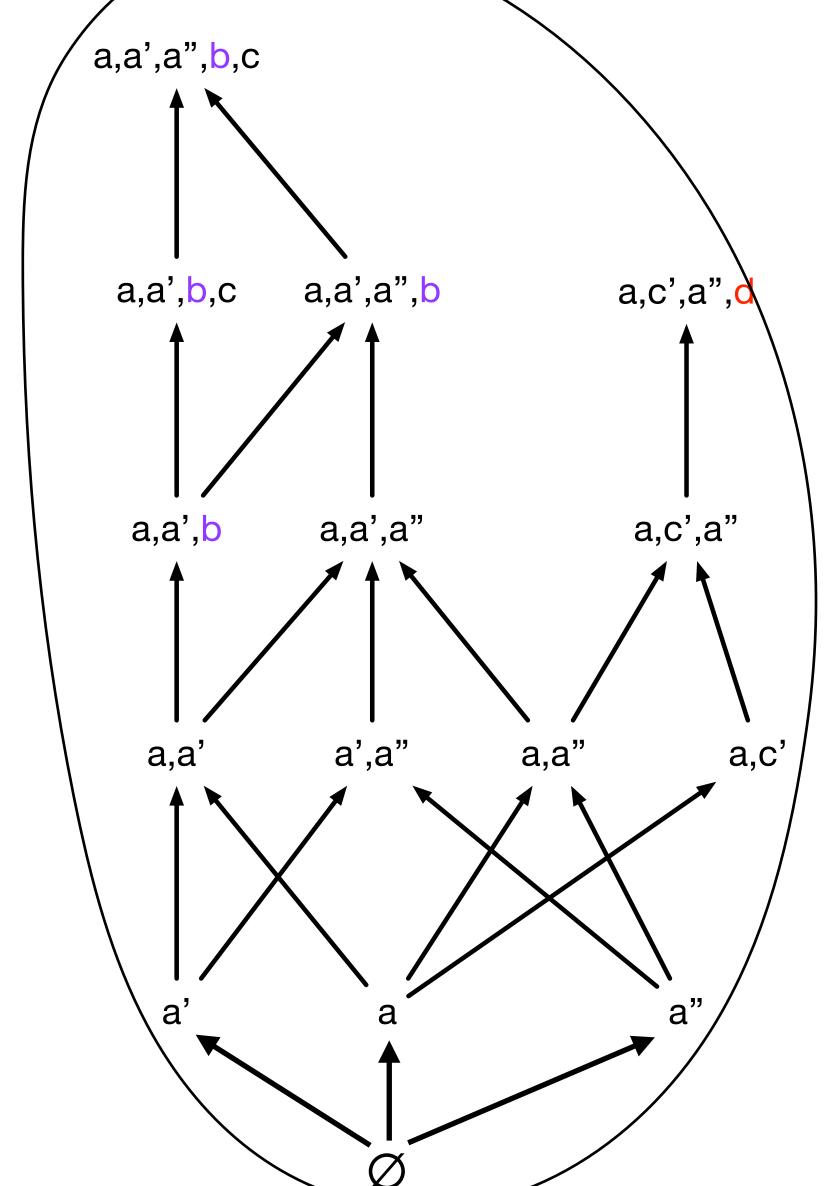
Not coherent

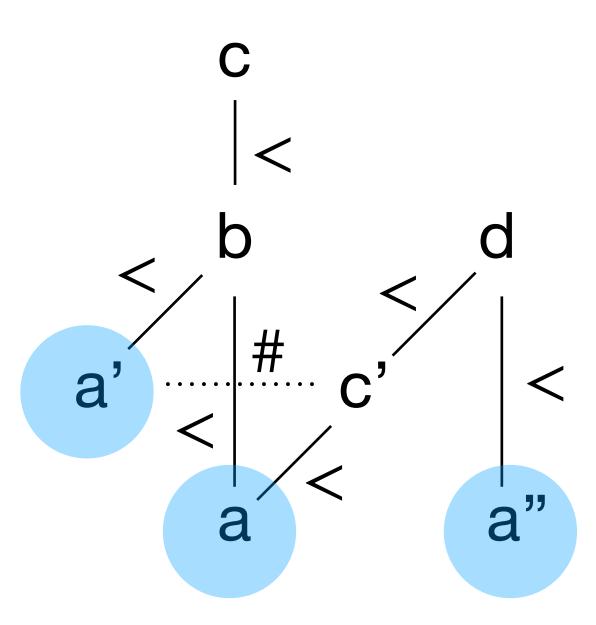
Not prime algebraic





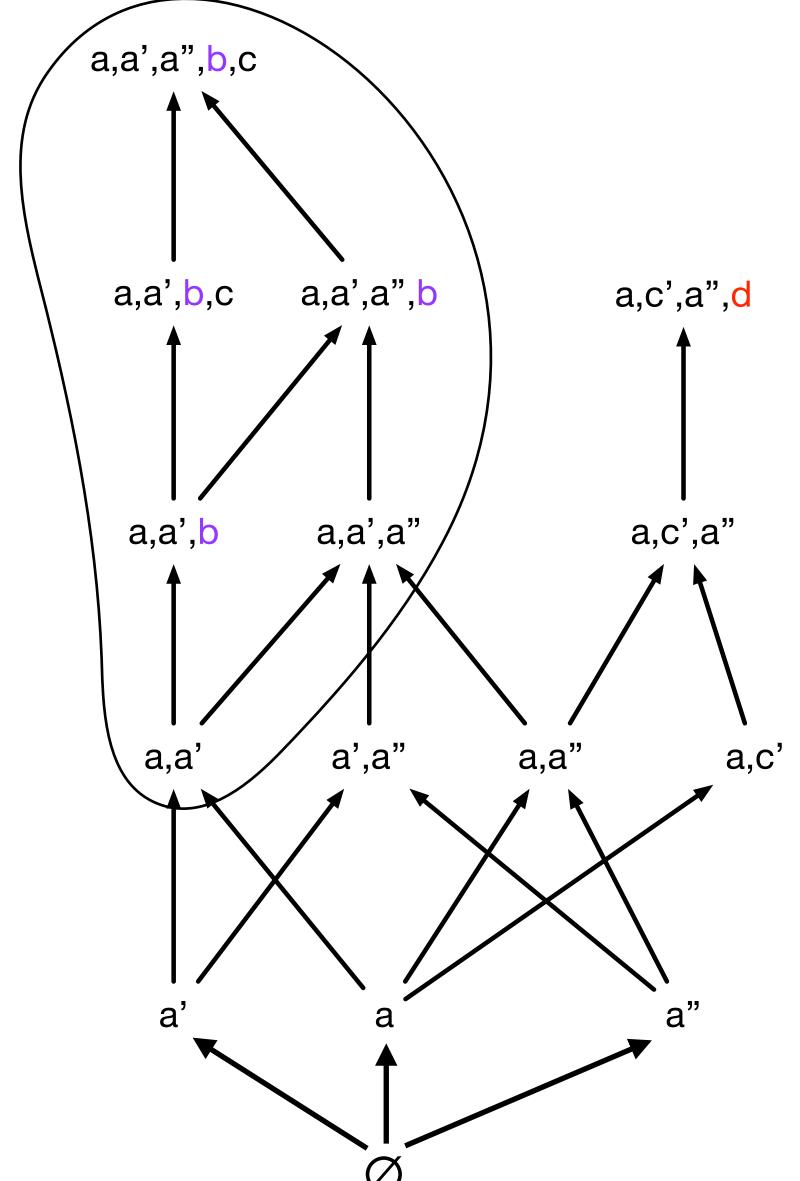
Event structure = local computations

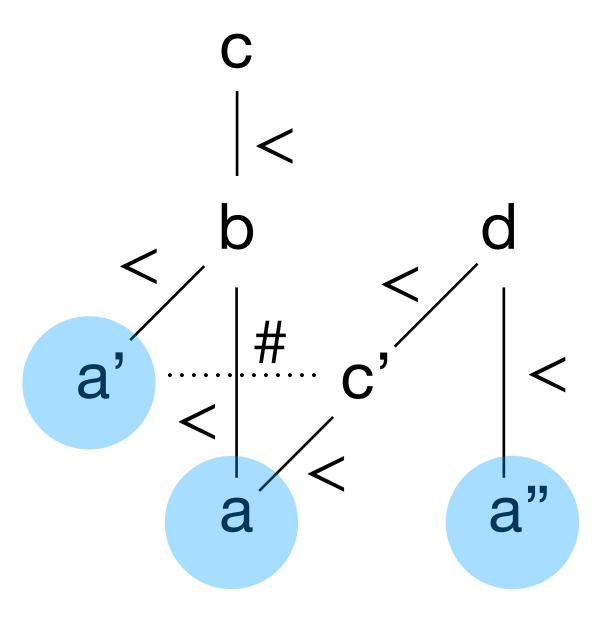




The enabled events are the minimal ones which are not in the forbidden set

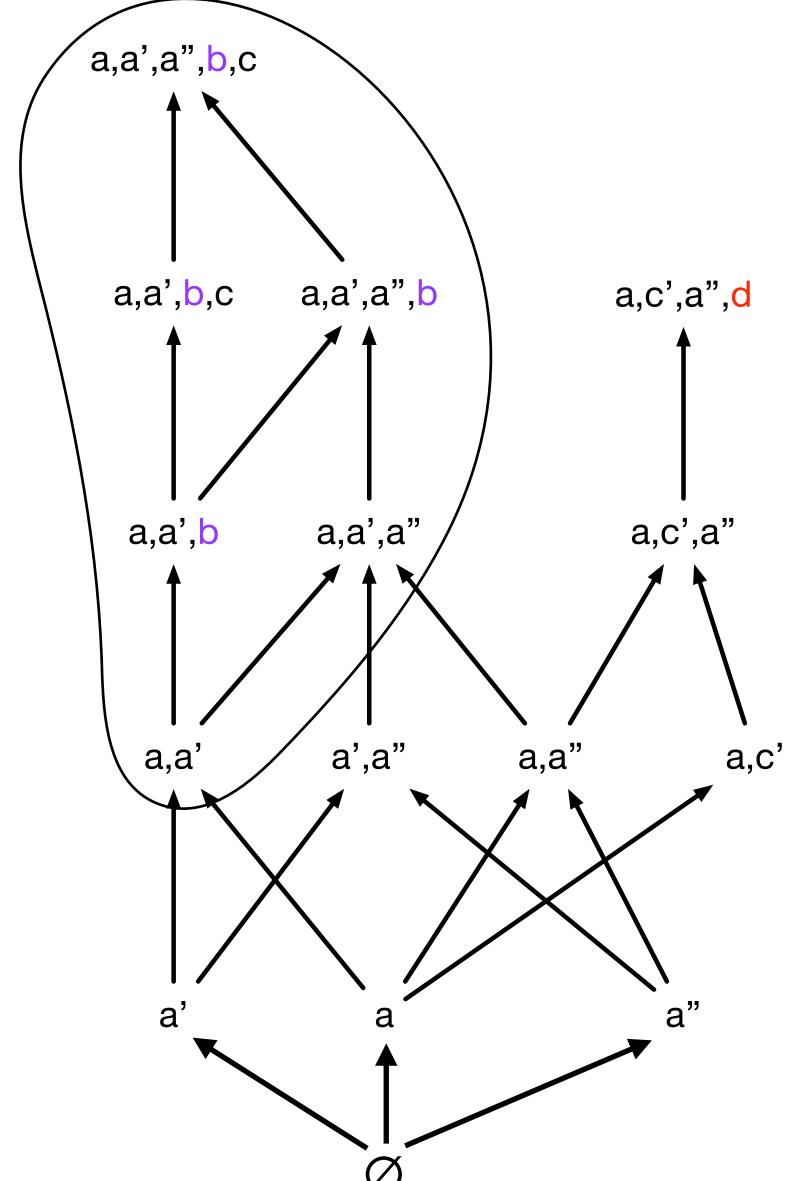
Event structure = local computations

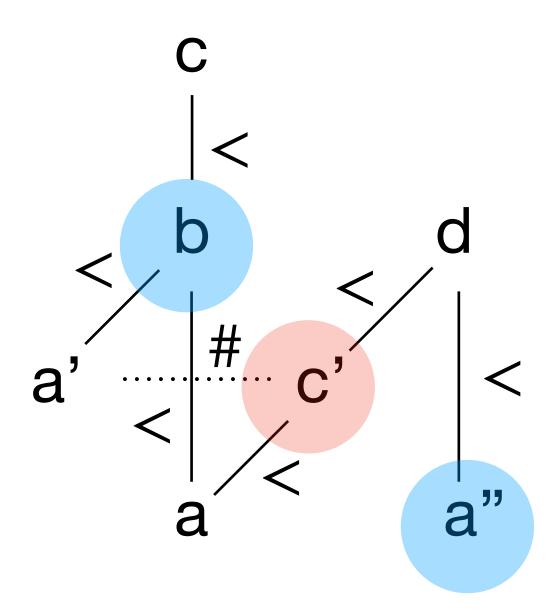




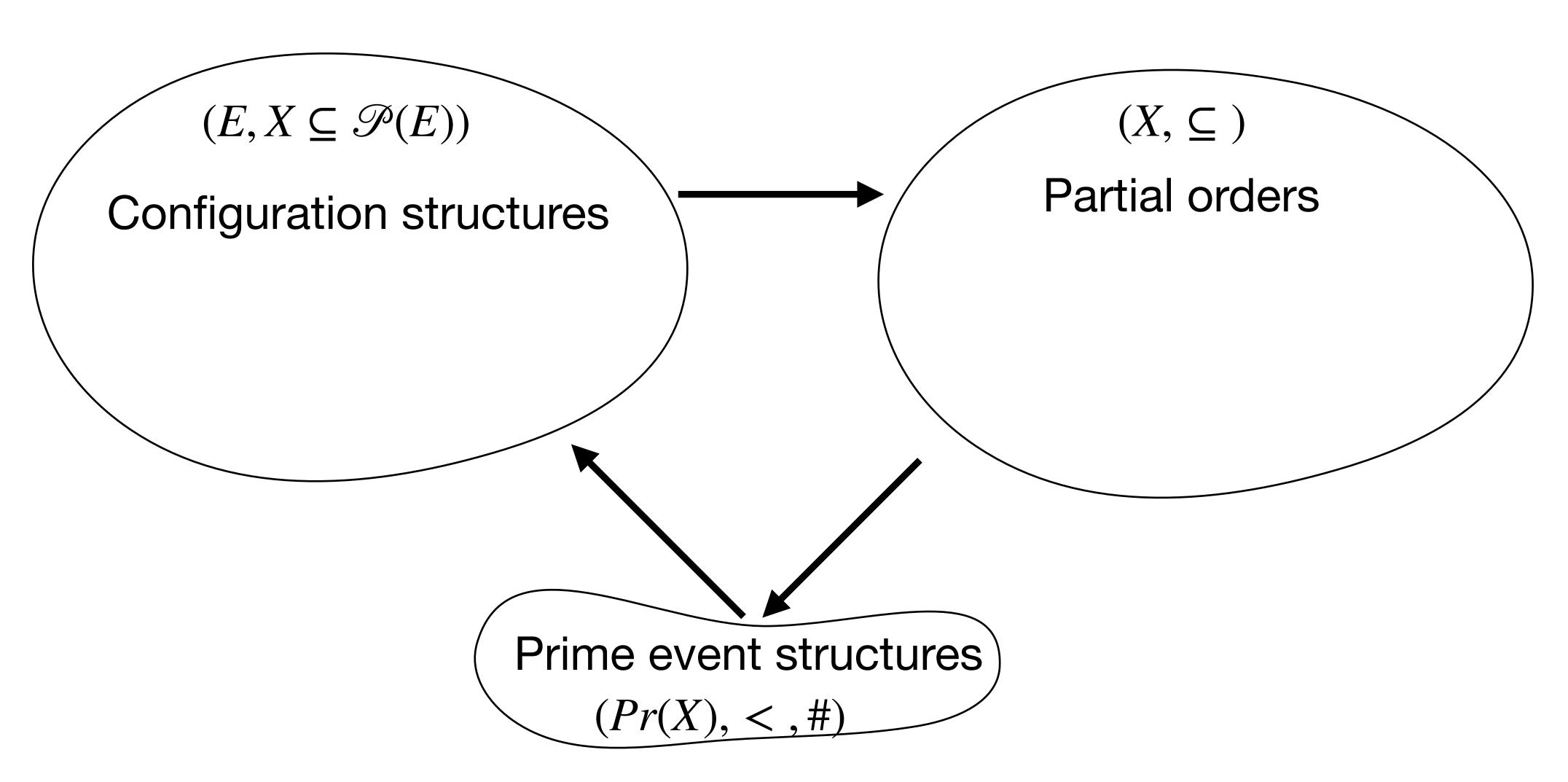
The enabled events are the minimal ones which are not in the forbidden set

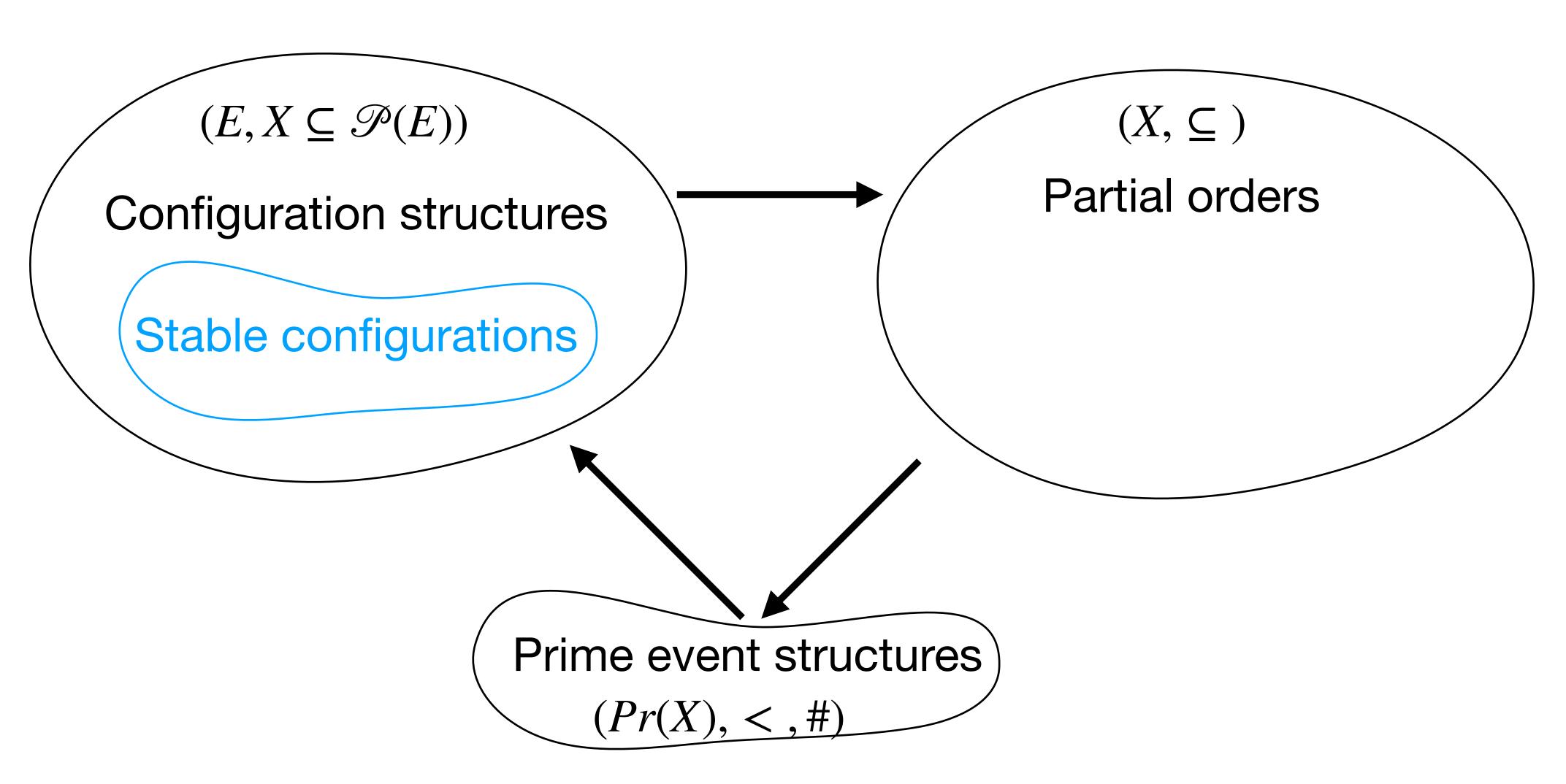
Event structure = local computations

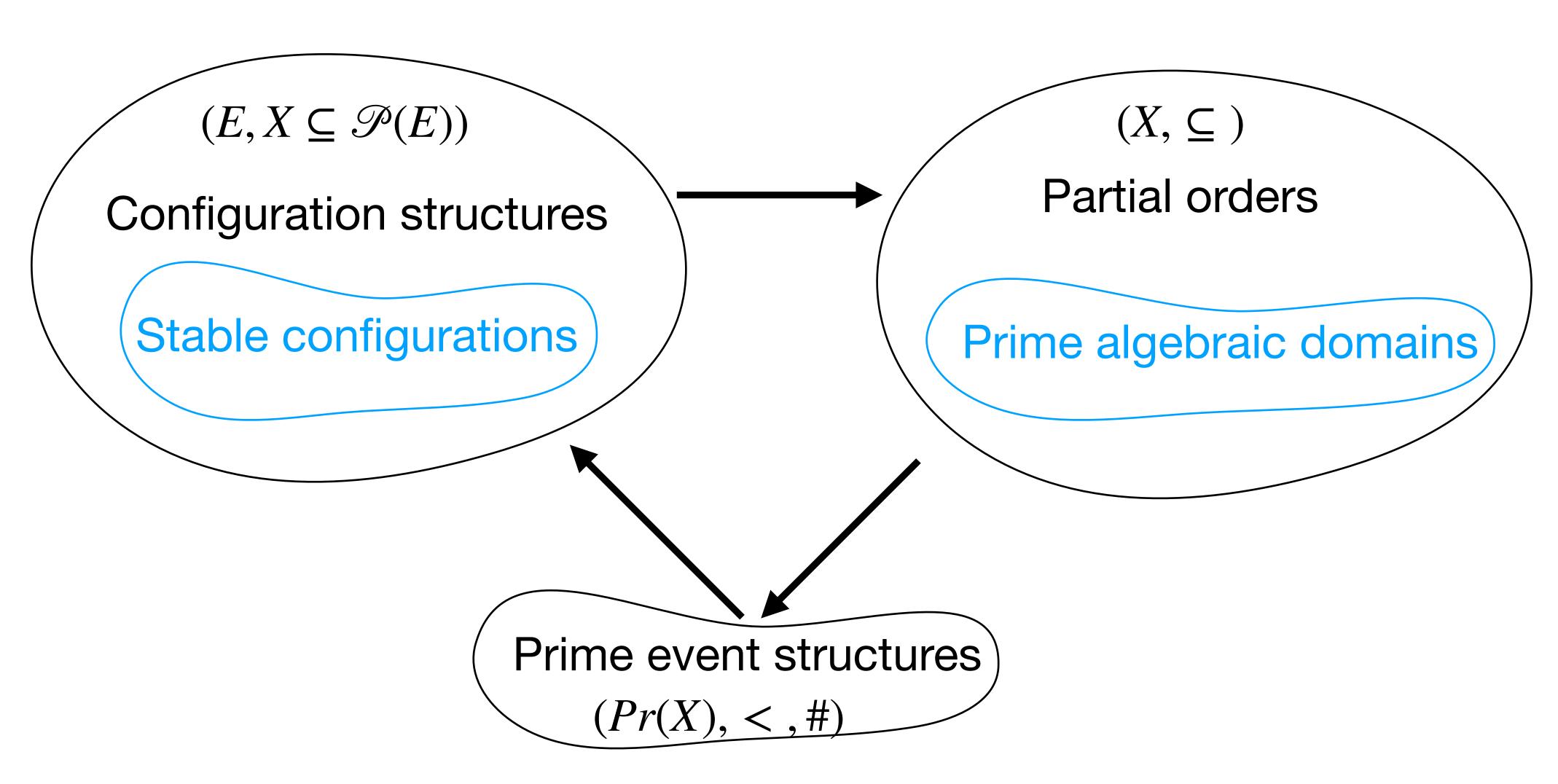


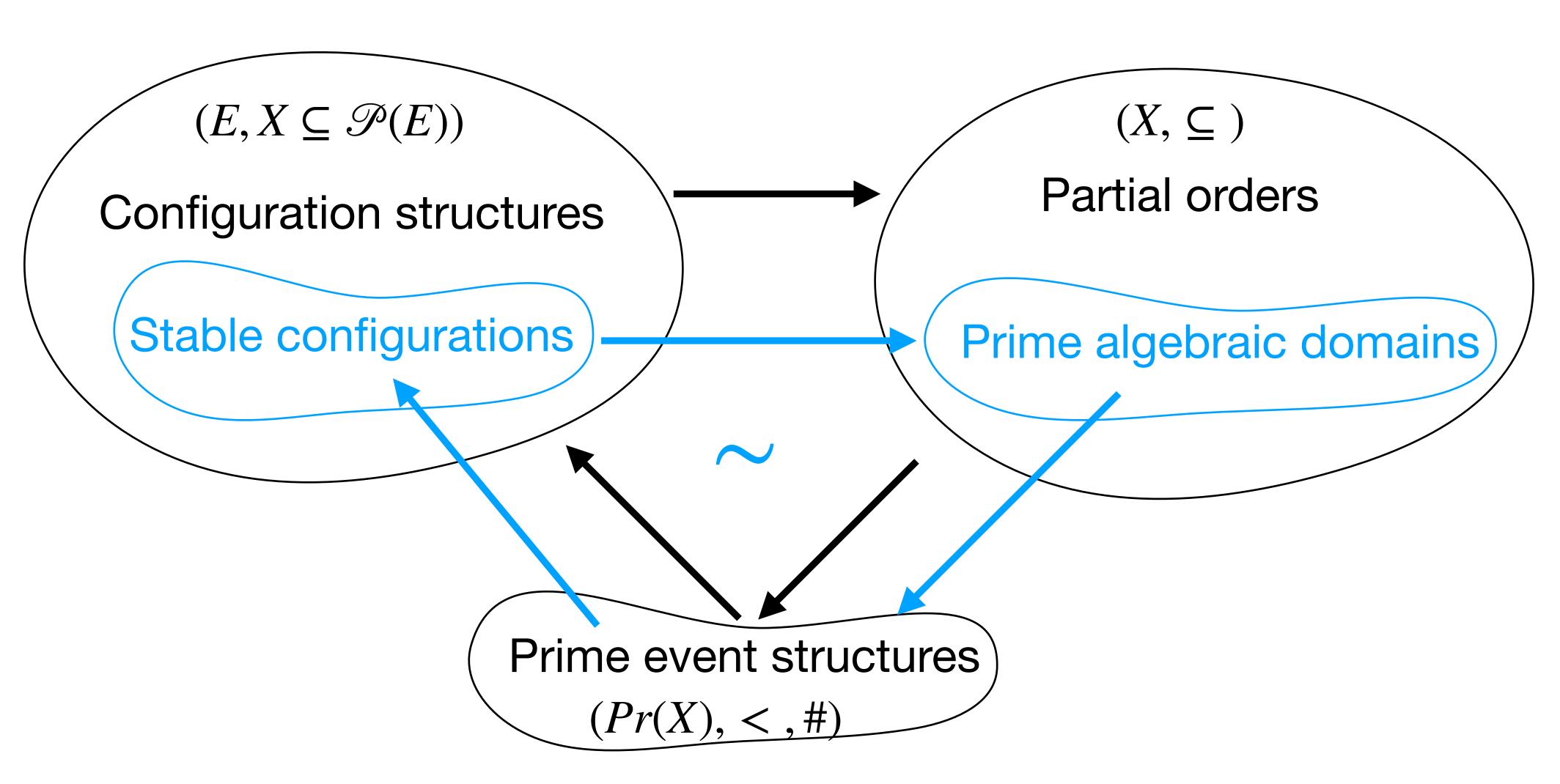


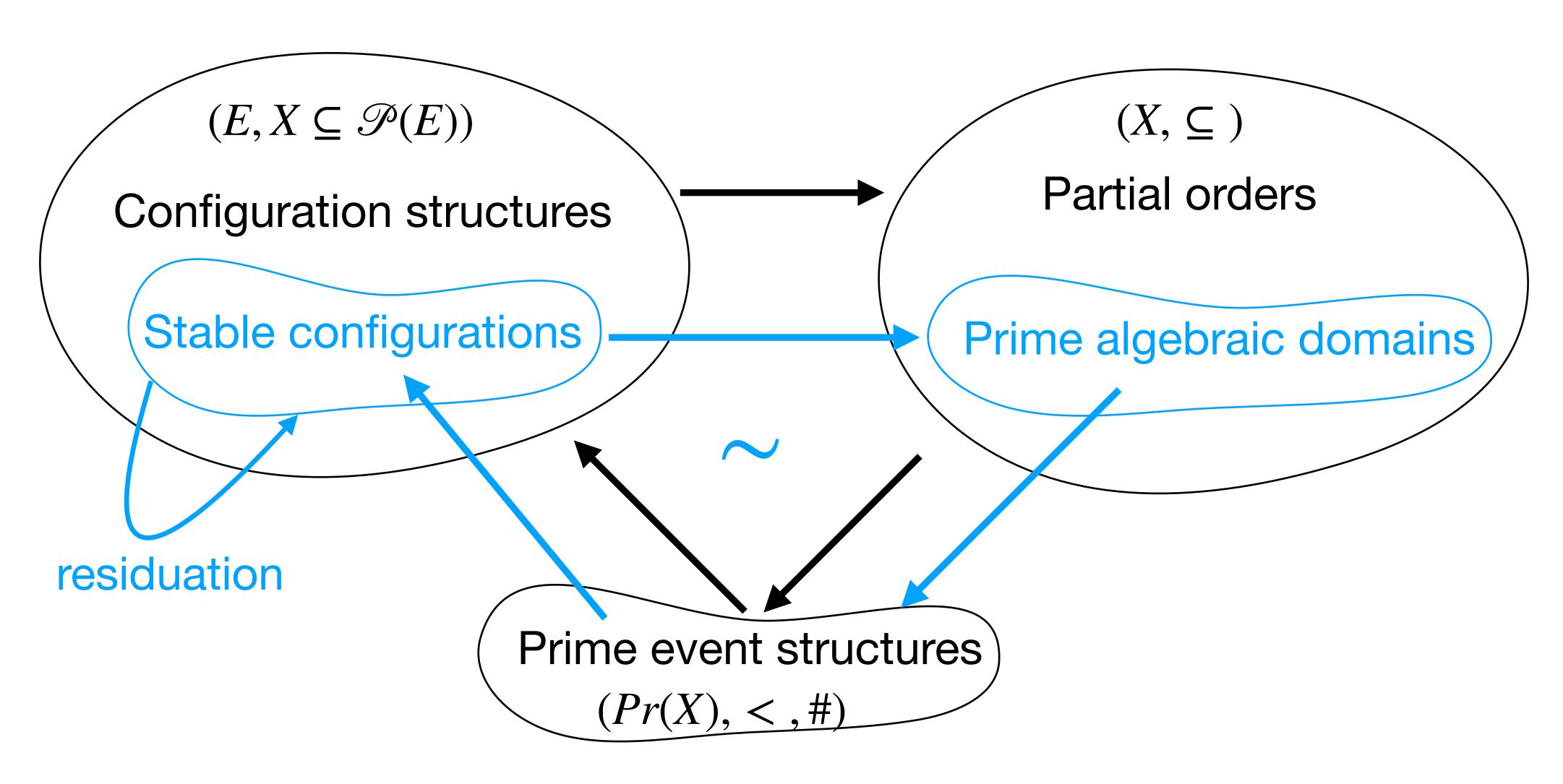
The enabled events are the minimal ones which are not in the forbidden set

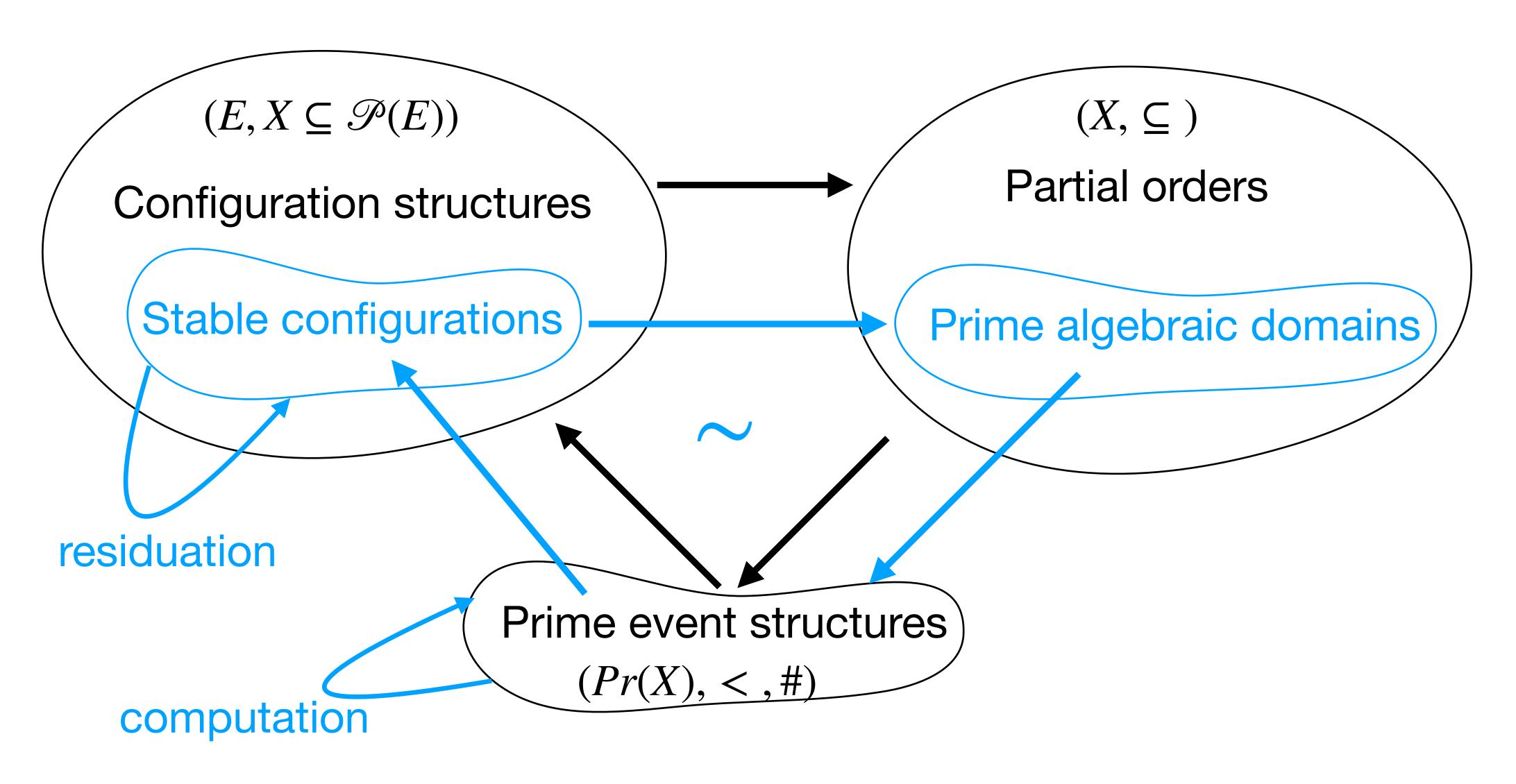


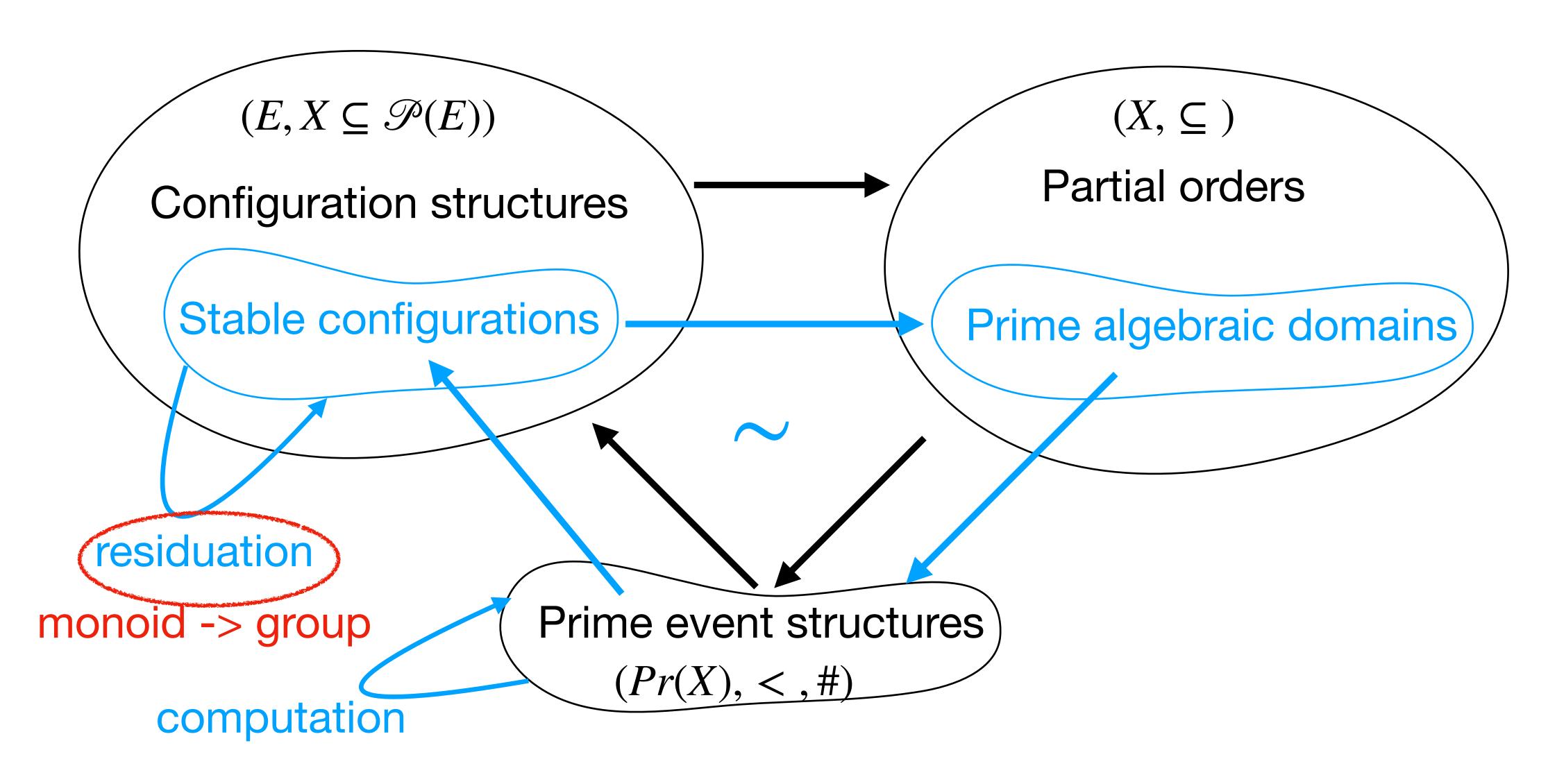


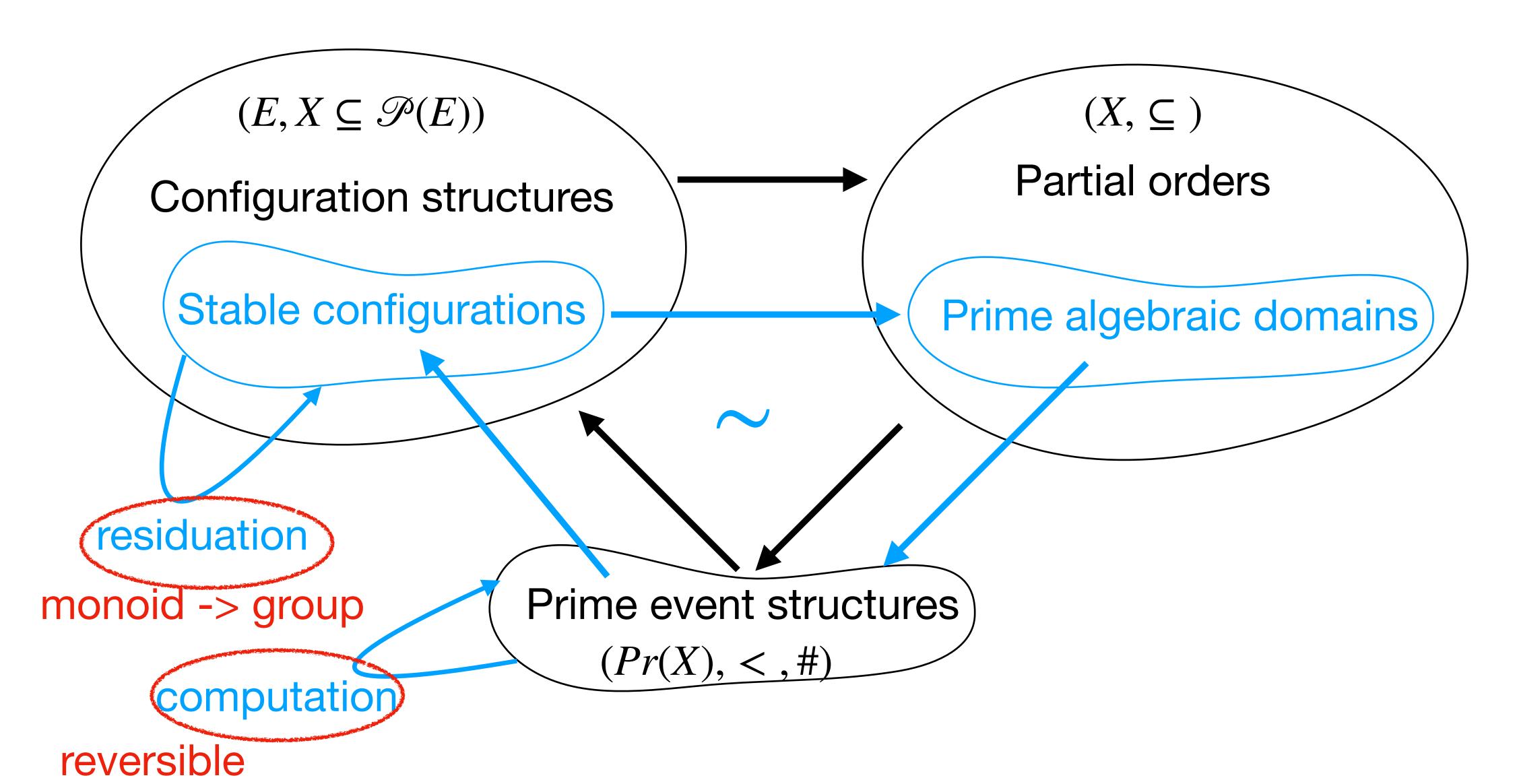












Symmetric residual

Definition 2.3 Let $\mathbb{C} \in \mathcal{C}_E$. For all finite $x \in \mathbb{C}$, we define the residual of \mathbb{C} after x:

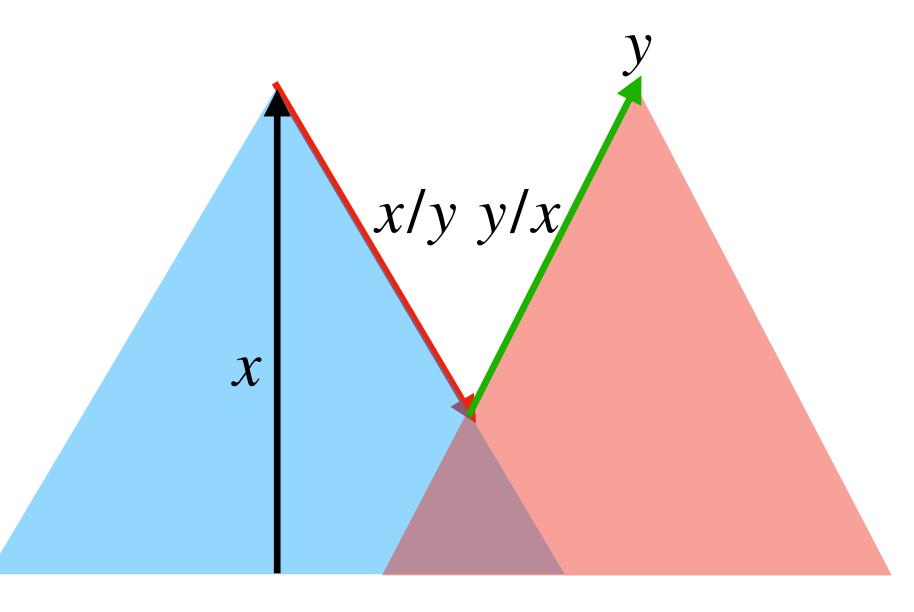
$$x\cdot\mathbb{C}\coloneqq\langle E,\{z\in\mathcal{P}(E)\mid\exists y\in\uparrow^{\mathbb{C}}\{x\}:z=y\backslash x\}\rangle$$

where $y \setminus x := \{a \in y \mid a \notin x\}$ is the classical set difference.

$$x\Delta y =_{def} x \ y \cup y \ x$$
 $(\mathcal{P}(E), \Delta)$ is a group if $x \subseteq y$ then $x\Delta y = y \ x \subseteq y$

$$(\mathcal{P}(E), \Delta)$$
 is a group

if
$$x \subseteq y$$
 then $x\Delta y = y \backslash x$



Symmetric residual

Definition 2.3 Let $\mathbb{C} \in \mathcal{C}_E$. For all finite $x \in \mathbb{C}$, we define the residual of \mathbb{C} after x:

$$x \cdot \mathbb{C} := \langle E, \{ z \in \mathcal{P}(E) \mid \exists y \in \uparrow^{\mathbb{C}} \{x\} : z = y \setminus x \} \rangle$$

where $y \setminus x := \{a \in y \mid a \not\in x\}$ is the classical set difference.

$$x\Delta y =_{def} x \backslash y \cup y \backslash x$$

$$(\mathcal{P}(E), \Delta)$$
 is a group

$$x\Delta y =_{def} x \ y \cup y \ x$$
 $(\mathcal{P}(E), \Delta)$ is a group if $x \subseteq y$ then $x\Delta y = y \ x \subseteq y$

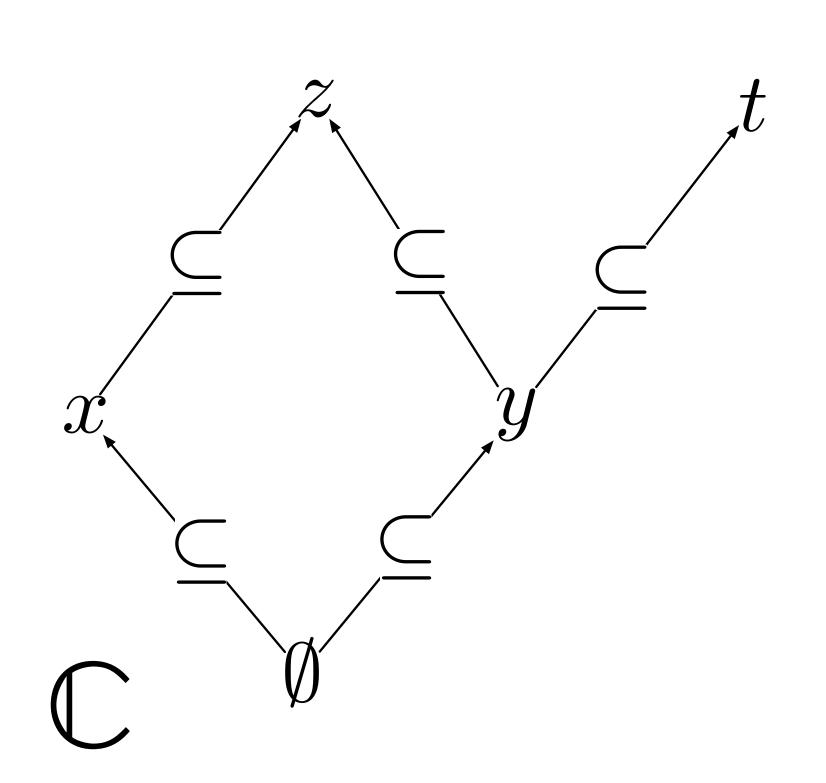
Definition 3.1 Let $\mathbb{C} \in \mathcal{C}_E$. For all finite $x \in \mathbb{C}$, we define the symmetric residual of \mathbb{C} after x:

$$x\odot\mathbb{C}\coloneqq\langle E,\{z\in\mathcal{P}(E)\mid\exists y\in\mathbb{C}:z=y\vartriangle x\}\rangle.$$

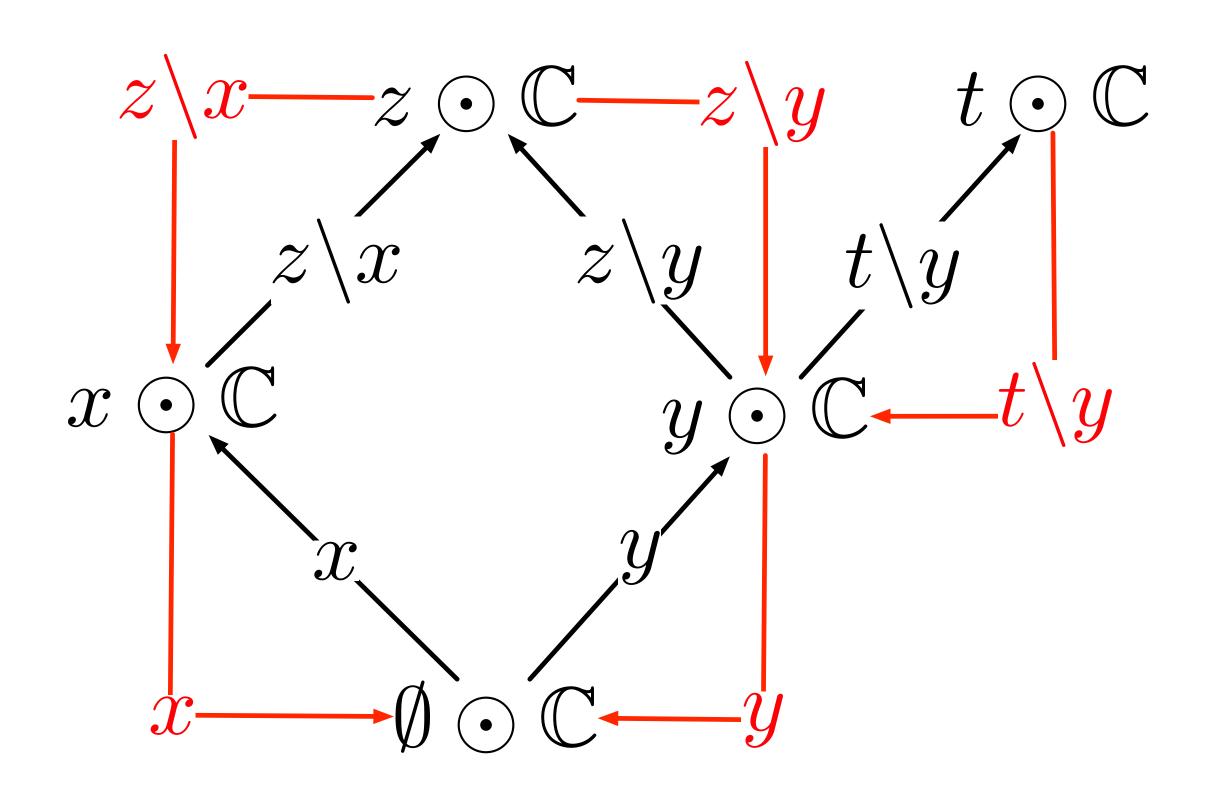
Proposition 3.2 (Group action) The operator $(\odot): \mathcal{P}_{fin}(E) \times \mathcal{C}_E \to \mathcal{C}_E$ is a group action on configuration structures, i.e.:

- for all finite configurations $x, y, \text{ if } x \in \mathbb{C} \text{ and } y \in x \odot \mathbb{C}, \text{ then } x \odot (y \odot \mathbb{C}) = (x \triangle y) \odot \mathbb{C}.$
- $\emptyset \odot \mathbb{C} = \mathbb{C}$.

Reversible computation



+ symmetric residuation



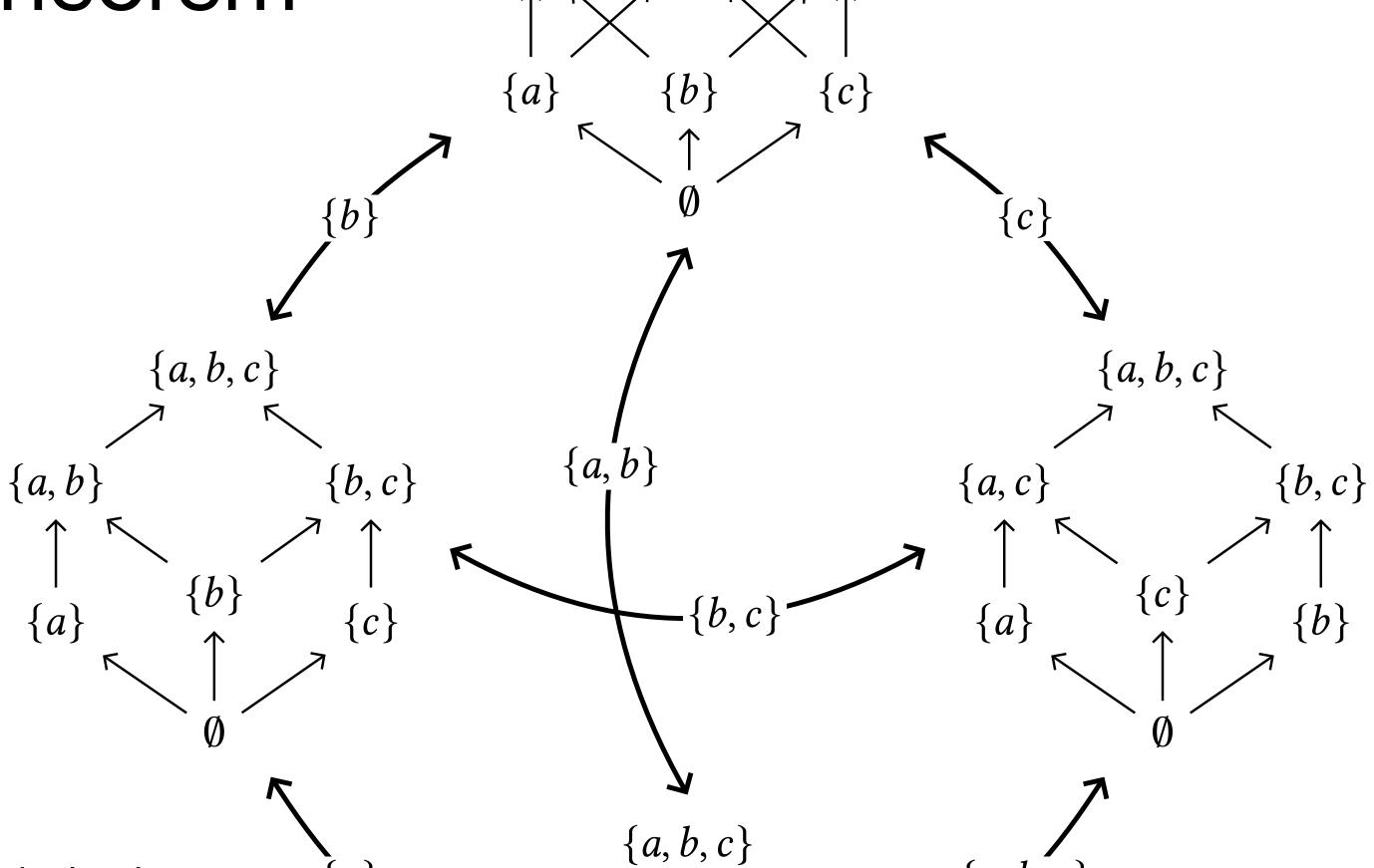
(conservative) labelled transition system as a group action's orbit

{*a*, *b*} $\{a,c\}$ {*b*, *c*} Stable orbit theorem {*b*} {*a*} {*c*} $\{a,b,c\}$ $\{a,b,c\}$ {*a*, *b*} {*a*, *b*} {*b*, *c*} $\{a,c\}$ {*b*} {*c*} $\{b,c\}$ {*a*} *{a}* {*c*} $\{a,b,c\}$ $\{a,b,c\}$ $\{b,c\}$ $\{a,c\}$ {*a*, *b*}

Theorem: \mathbb{C} is a prime event structure if and only if one the point in its orbit is.

 $\{b,c\}$

Stable orbit theorem



{*a*, *b*}

 $\{a,c\}$

 $\{b,c\}$

 $\{a,b,c\}$

{*b*, *c*}

{*a*, *b*}

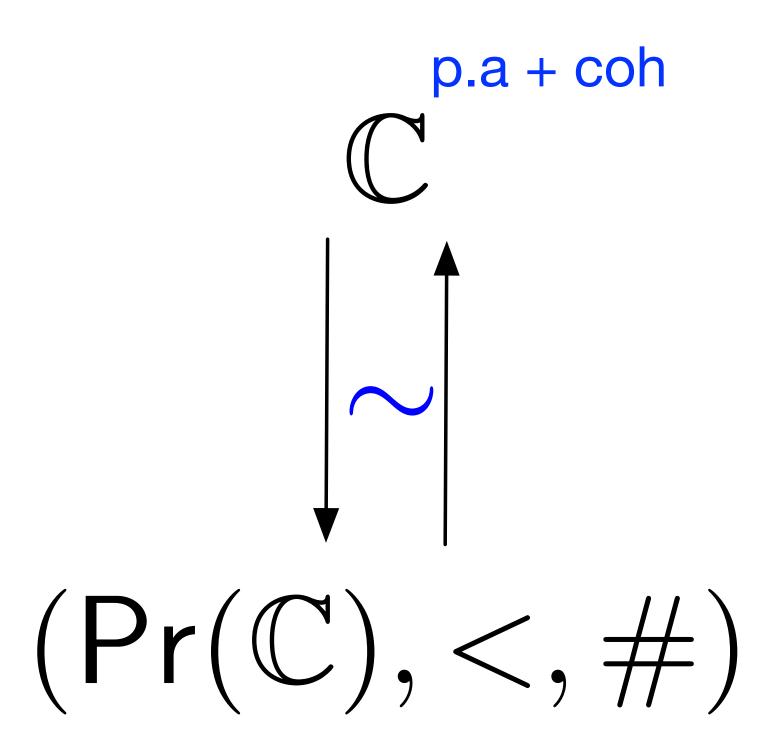
 $\{a,c\}$

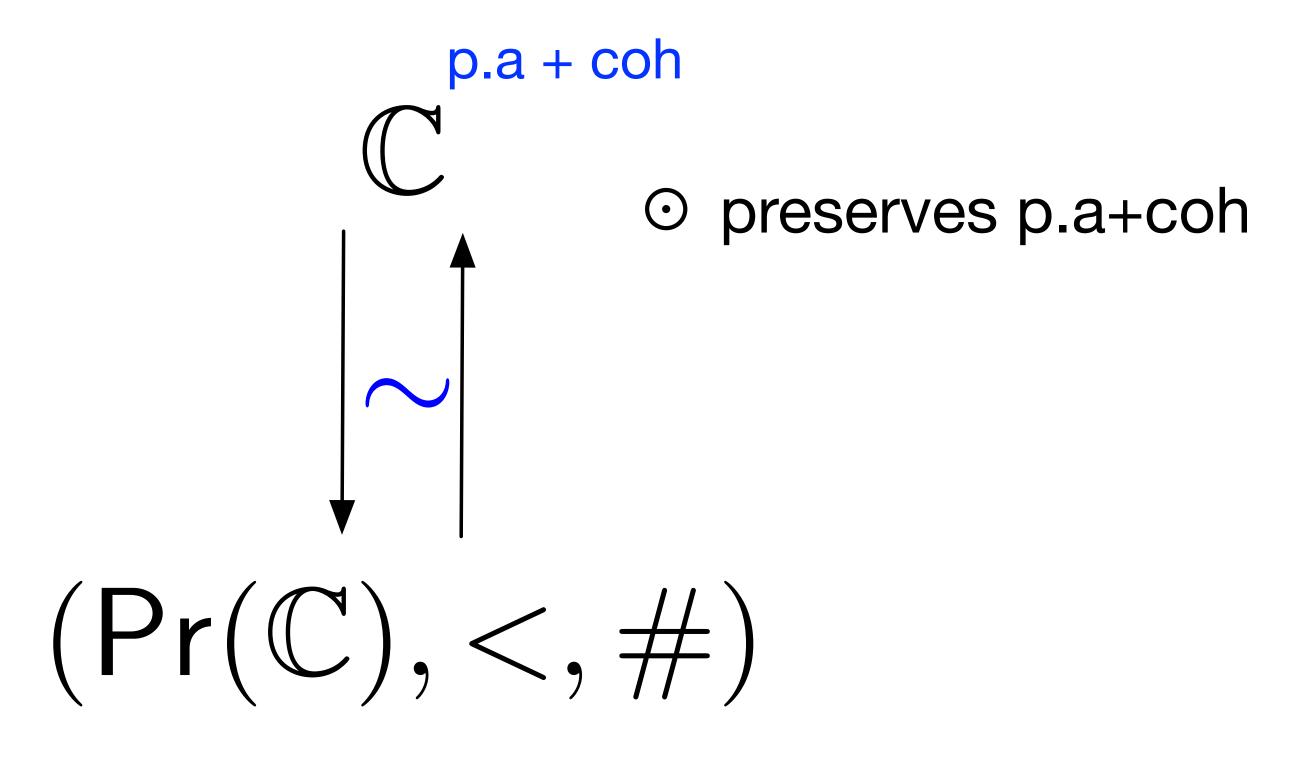
{*a*}

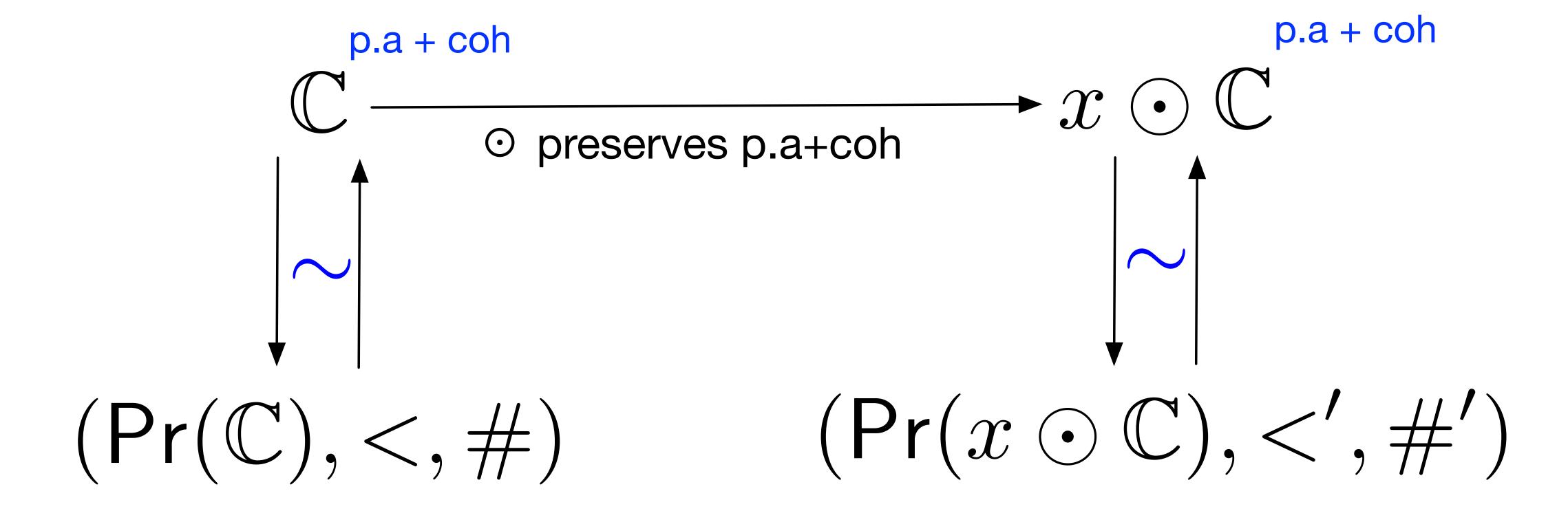
Property: The following are equivalent!

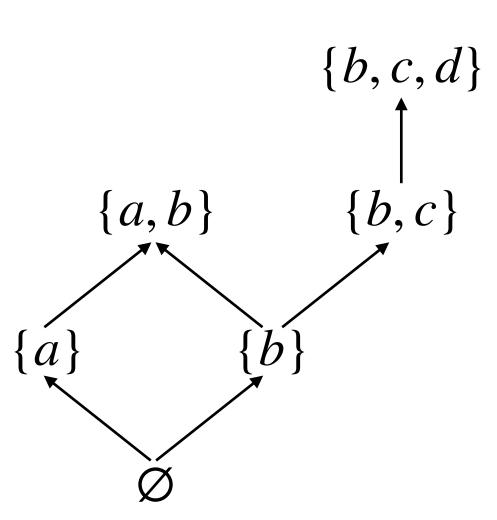
- \mathbb{C} is not an event structure
- $\operatorname{orb}(\mathbb{C})$ has an incoherent element
- orb($\mathbb C$) has an element not $\overline{\mathbb U}$ closed
- $orb(\mathbb{C})$ has an element not \cap -closed

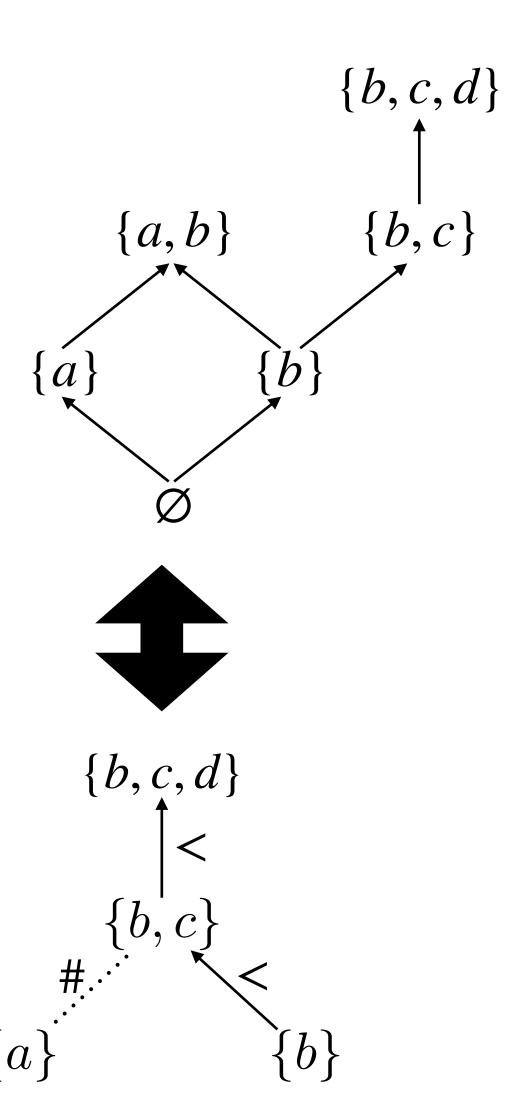
Theorem: \mathbb{C} is a prime event structure if and only if one the point in its orbit is.

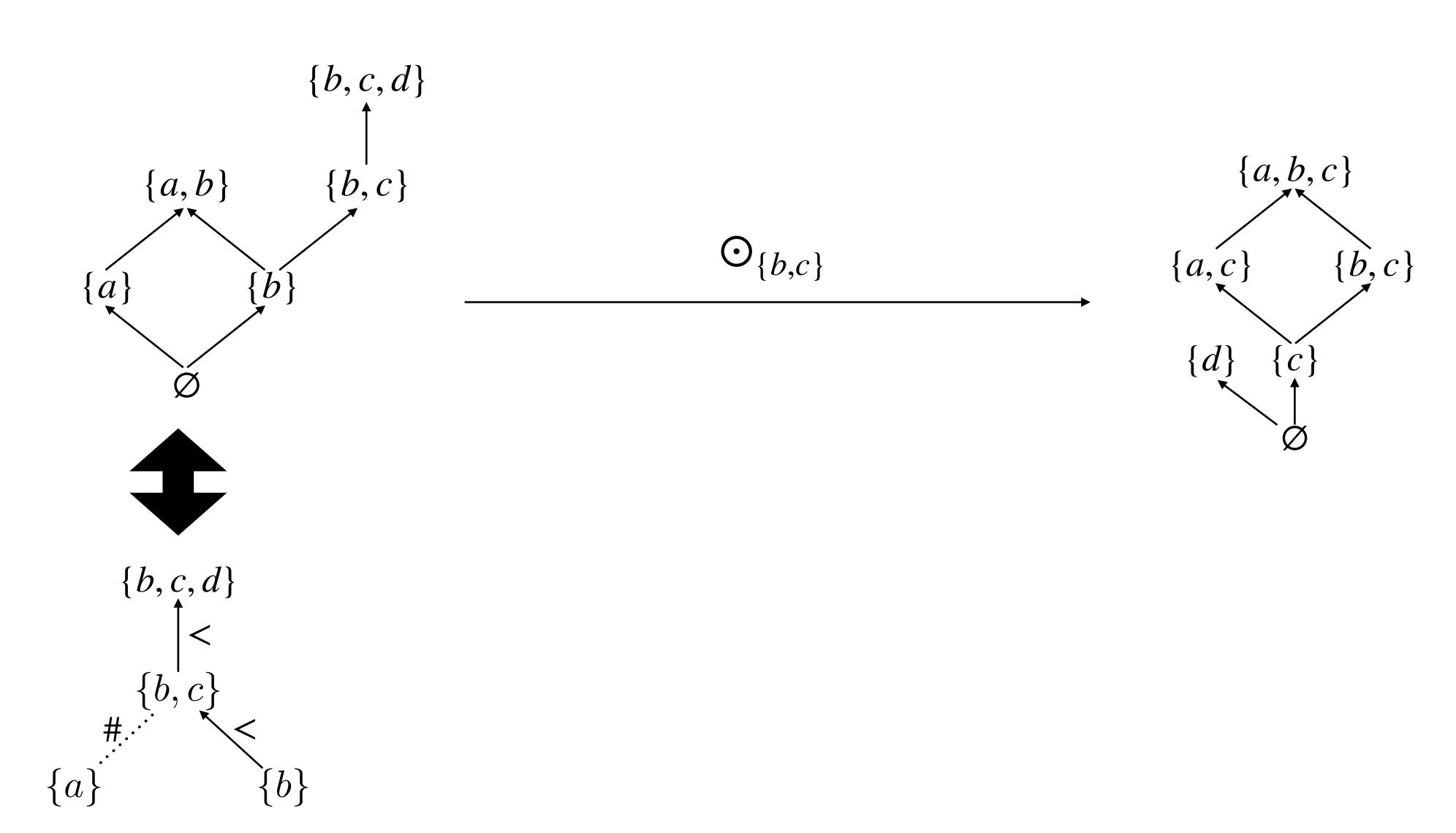


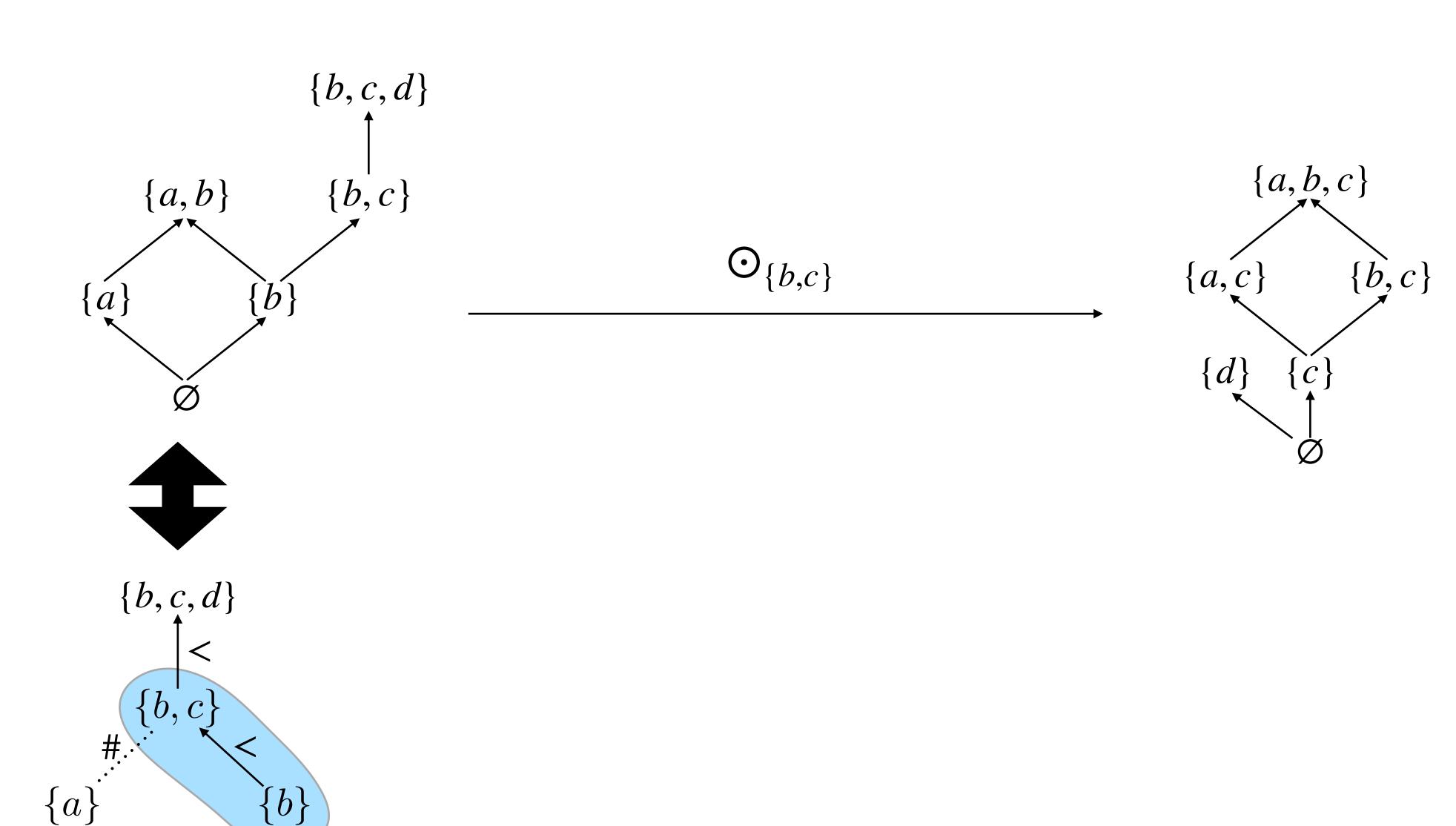


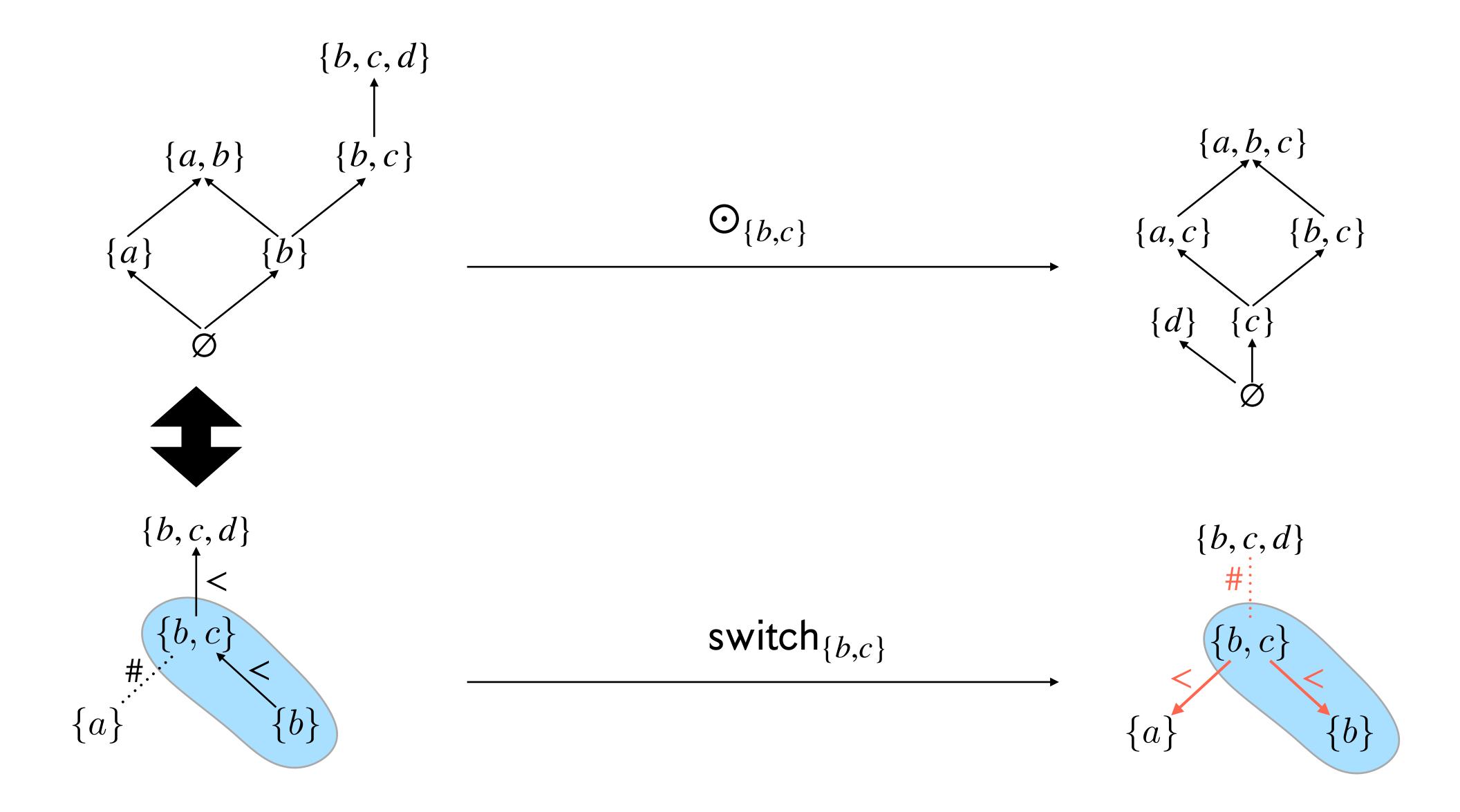


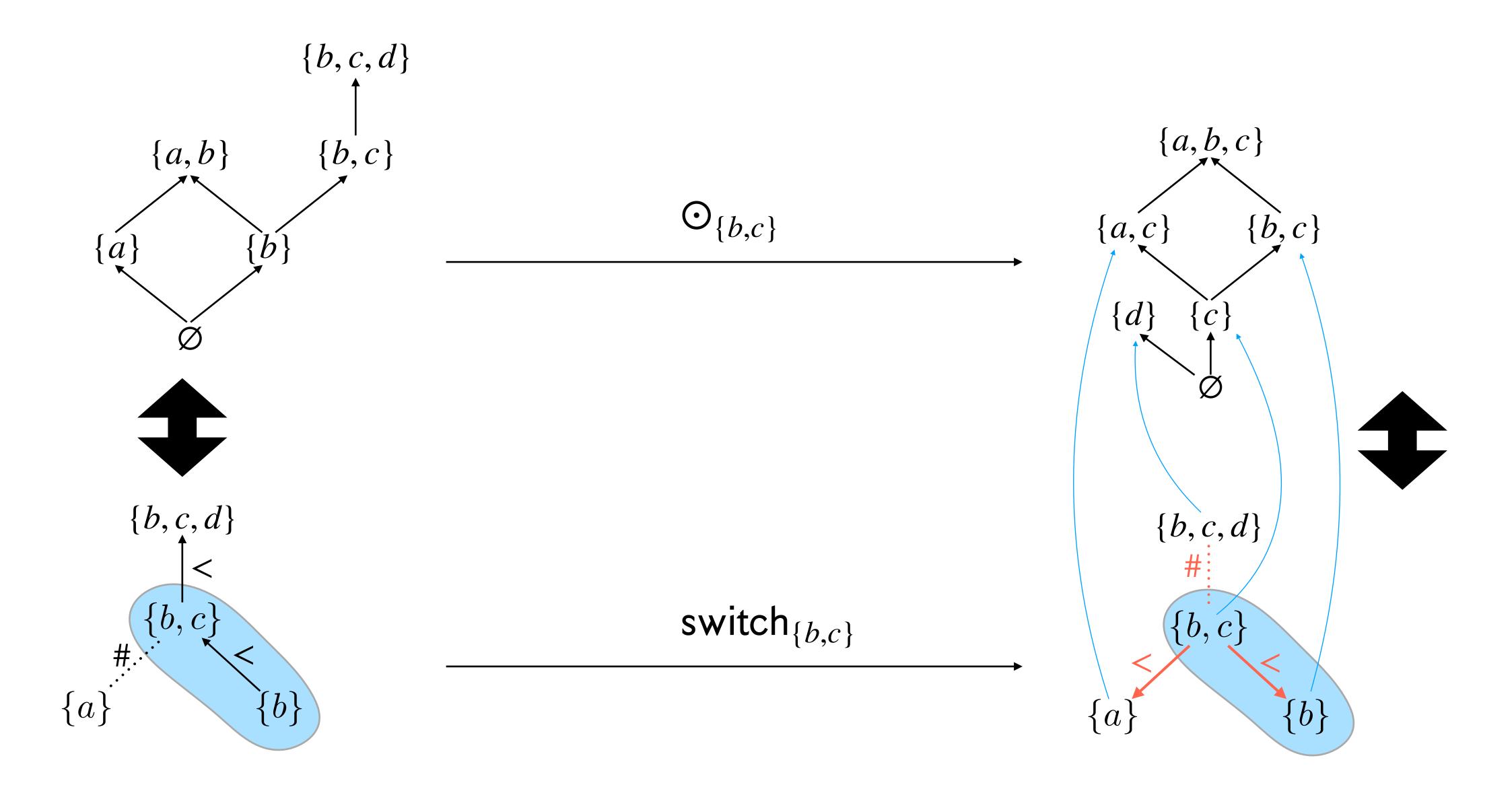




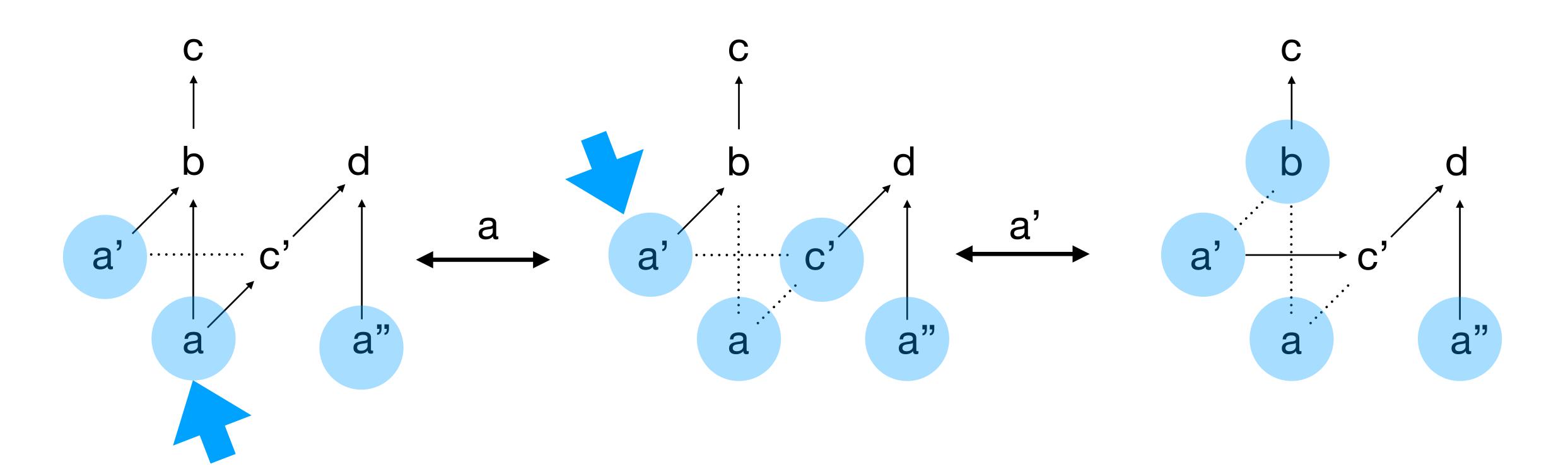








Event structure = local (reversible) computations



Take away

Any concurrent formalism with stable (prime algebraic coherent) causal structure (CCS, CSP, Pi-calculus etc.) ...

Can be equipped with a (causally consistent) reversible semantics by making sure transition steps implement a switch.

Take away

Any concurrent formalism with stable (prime algebraic coherent) causal structure (CCS, CSP, Pi-calculus etc.) ...

$$\sum_{i} a_{i}.P_{i} \rightarrow_{a_{j}} P_{j} \quad (sum) \qquad \frac{P \rightarrow_{a} P'}{P\|Q \rightarrow_{a} P'\|Q} \quad (par)$$

Can be equipped with a (causally consistent) reversible semantics by making sure transition steps implement a switch.

Take away

Any concurrent formalism with stable (prime algebraic coherent) causal structure (CCS, CSP, Pi-calculus etc.) ...

$$\sum_{i} a_{i}.P_{i} \rightarrow_{a_{j}} P_{j} \quad (sum) \qquad \frac{P \rightarrow_{a} P'}{P\|Q \rightarrow_{a} P'\|Q} \quad (par)$$

Can be equipped with a (causally consistent) reversible semantics by making sure transition steps implement a switch.

$$\sum_{i} a_i . P_i \rightarrow_{a_j} P_j + a_j . \sum_{i \neq j} a_i . P_j \quad (rsum)$$